Matrices - Q33: Shears [Practice/M] (3/6/21)

Find the invariant lines of the shear represented by the matrix $\left(\begin{array}{ll}4 & -3 \\ 3 & -2\end{array}\right)$

Find the invariant lines of the shear represented by the matrix $\left(\begin{array}{ll}4 & -3 \\ 3 & -2\end{array}\right)$

## Solution

The first step is to find the line of invariant points. This will be an eigenvector (passing through the Origin) with eigenvalue of 1.
$\left|\begin{array}{cc}4-\lambda & -3 \\ 3 & -2-\lambda\end{array}\right|=0 \Rightarrow(4-\lambda)(-2-\lambda)+9=0$
$\Rightarrow \lambda^{2}-2 \lambda+1=0 \Rightarrow(\lambda-1)^{2}=0 \Rightarrow \lambda=1$
[This confirms that there is an eigenvalue of 1 , but we could have skipped this step.]
$\left(\begin{array}{ll}3 & -3 \\ 3 & -3\end{array}\right)\binom{x}{y}=\binom{0}{0} \Rightarrow y=x$ is the line of invariant points
The invariant lines of the shear are the lines parallel to $y=x$;
ie $y=x+c$

## Alternative method

$\left(\begin{array}{ll}4 & -3 \\ 3 & -2\end{array}\right)\binom{x}{m x+c}=\binom{x^{\prime}}{m x^{\prime}+c} \forall x[$ for all $x]$
$\Rightarrow 4 x-3 m x-3 c=x^{\prime}(1) \& 3 x-2 m x-2 c=m x^{\prime}+c(2)$
Substituting for $x^{\prime}$ from (1) into (2):
$x(3-2 m)-3 c=m(4 x-3 m x-3 c)$
$\Rightarrow x\left(3-2 m-4 m+3 m^{2}\right)-3 c+3 m c=0$
As this is to be true $\forall x$, we can equate powers of $x$, to give:
$3 m^{2}-6 m+3=0$ and $-3 c+3 m c=0 ;$
ie $m^{2}-2 m+1=0$ and $c(m-1)=0$
so that $m=1$ (and $c$ can take any value),
and hence the invariant lines have the form $y=x+c$

