Matrices - Q32: Shears [Problem/M] (3/6/21)

If the 2×2 matrix M represents a shear, what can be said about M^{-1} ? [It can be assumed that the trace of a 2×2 matrix will equal 2 in the case of a shear.]

If the 2×2 matrix M represents a shear, what can be said about M^{-1} ? [It can be assumed that the trace of a 2×2 matrix will equal 2 in the case of a shear.]

Solution

The determinant will equal 1, in the case of a shear.
$\left|M^{-1}\right|=|M|$ and $\operatorname{tr}\left(M^{-1}\right)=\operatorname{tr}(M)$
$\left[\right.$ as $M^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -c \\ -b & a\end{array}\right)=\left(\begin{array}{cc}d & -c \\ -b & a\end{array}\right)$, if $M=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$, , so that M^{-1} will also represent a shear. It will be in the opposite direction to that represented by M.

