Matrices - Q31: Shears [Problem/M] (3/6/21)

Consider the matrix $M=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$, which represents a shear. Show that it is not possible for all of the elements of the matrix to be positive. [It can be assumed that $\operatorname{tr} M=2$.]

Consider the matrix $M=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$, which represents a shear. Show that it is not possible for all of the elements of the matrix to be positive. [It can be assumed that $\operatorname{tr} M=2$.]

Solution

$a d-b c=1 \& a+d=2$
$\Rightarrow a(2-a)-b c=1$
$\Rightarrow-b c=a^{2}-2 a+1=(a-1)^{2}$
If $b \& c$ are both positive, then $(a-1)^{2}<0$, which isn't possible.

