Matrices - Q30: Invariant Points \& Lines [M] (9/3/24)
$M=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ represents a transformation.
Under what conditions will there be a line of invariant points passing through the Origin?
[It can in fact be shown that any line of invariant points will pass through the Origin.]

Solution
Suppose that there is a line of invariant points $y=m x$, so that $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)\binom{x}{m x}=\binom{x}{m x}$ for all x
ie $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)\binom{x}{m x}=\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)\binom{x}{m x}$
or $\left(\begin{array}{cc}a-1 & c \\ b & d-1\end{array}\right)\binom{x}{m x}=\binom{0}{0}$
For there to be a solution other than $x=0, y=0$,

$$
\begin{aligned}
& \left|\begin{array}{cc}
a-1 & c \\
b & d-1
\end{array}\right|=0 \\
& \Rightarrow(a-1)(d-1)-b c=0 \\
& \Rightarrow 1-(a+d)+a d-b c=0 \\
& \Rightarrow \operatorname{tr} M=|M|+1
\end{aligned}
$$

