Matrices - Q28: Invariant Points \& Lines [Practice/M] (3/6/21)
(i) Use a matrix method to find the invariant lines for a reflection in the y-axis.
(ii) Investigate the invariant lines for a reflection in the x-axis.
(i) Use a matrix method to find the invariant lines for a reflection in the y-axis.
(ii) Investigate the invariant lines for a reflection in the x-axis.

Solution

(i) Suppose that an invariant line has the equation $y=m x+c$ (noting that lines of the form $x=a$ aren't invariant lines)

The image of a point on this line is:
$\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)\binom{x}{m x+c}=\binom{-x}{m x+c}$
For this image to lie on the line, we require that
$m(-x)+c=m x+c$
$\Rightarrow 2 m x=0$
$\Rightarrow m=0$ (for any value of c), or $x=0$
ie the invariant lines are $y=c$ and $x=0$ (the line of invariant points)
(ii) Suppose that an invariant line has the equation $y=m x+c$.

The image of a point on this line is:
$\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\binom{x}{m x+c}=\binom{x}{-m x-c}$
For this image to lie on the line, we require that
$m x+c=-m x-c$
Equating coefficients of $x: m=-m \Rightarrow m=0$
Equating the constant terms: $c=-c \Rightarrow c=0$

So we have only found the line $y=0$ (the line of invariant points).
Now consider lines of the form $x=a$.
This gives $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\binom{a}{y}=\binom{a}{-y}$
As this lies on the line $x=a$ for all values of a, the lines $x=a$ are also invariant lines.

