Matrices - Q27: Invariant Points \& Lines [Practice/E]
(3/6/21)

Find the value of k for which the transformation $\left(\begin{array}{ll}2 & 4 \\ 3 & k\end{array}\right)$ has a line of invariant points, and find this line.

Find the value of k for which the transformation $\left(\begin{array}{ll}2 & 4 \\ 3 & k\end{array}\right)$ has a line of invariant points, and find this line.

Solution

Suppose that $\left(\begin{array}{ll}2 & 4 \\ 3 & k\end{array}\right)\binom{p}{q}=\binom{p}{q}$
Then $2 p+4 q=p$ and $3 p+k q=q$
so that $4 q=-p \&(k-1) q=-3 p$
Hence $\frac{q}{p}=-\frac{1}{4} \& \frac{q}{p}=-\frac{3}{k-1}$
so that $-\frac{1}{4}=-\frac{3}{k-1} \Rightarrow k-1=12$ \& hence $k=13$
[See "Invariant Points \& Lines - Conditions". A line of invariant points will exist when $\operatorname{tr} M=|M|+1$; in this case, when $2+k=$ $2 k-12+1]$

To find the line:
$\left(\begin{array}{cc}2 & 4 \\ 3 & 13\end{array}\right)\binom{p}{q}=\binom{p}{q} \Rightarrow 2 p+4 q=p \& 3 p+13 q=q$
so that $4 q=-p($ or $12 q=-3 p)$
and hence $q=-\frac{p}{4}$
ie the invariant points lie on the line $y=-\frac{x}{4}$
Check: $\left(\begin{array}{cc}2 & 4 \\ 3 & 13\end{array}\right)\binom{4}{-1}=\binom{4}{-1}$

