Matrices - Q26: Determinants [Problem/H](2/6/21)

Given that a 3×3 determinant can always be reduced to triangular form (in the same way as simultaneous equations), to produce a multiple of $\left|\begin{array}{lll}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right|$, show that it can be further reduced to a multiple of the Identity matrix. [Obviously this is an academic exercise, as the determinant can be evaluated as soon as triangular form has been reached.]

Given that a 3×3 determinant can always be reduced to triangular form (in the same way as simultaneous equations), to produce a multiple of $\left|\begin{array}{lll}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right|$, show that it can be further reduced to a multiple of the Identity matrix. [Obviously this is an academic exercise, as the determinant can be evaluated as soon as triangular form has been reached.]

Solution

From $\left|\begin{array}{lll}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right|$, if $R 1 \rightarrow R 1-a(R 2)$, we get $\left|\begin{array}{ccc}1 & 0 & b-a c \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right|$
Then, $C 3 \rightarrow C 3-c(C 2)$ gives $\left|\begin{array}{ccc}1 & 0 & b-a c \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|$
and finally $R 1 \rightarrow R 1-(b-a c)(R 3)$ gives $\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|$
[Note that no further factors have had to be taken outside the determinant - as expected, since $\left.\left|\begin{array}{lll}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right|=1\right]$

