Matrices – Q25: General [Problem/H](2/6/21)

Find the condition(s) for two 2×2 matrices to commute.

Find the condition(s) for two 2×2 matrices to commute.

Solution

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} e & g \\ f & h \end{pmatrix} = \begin{pmatrix} e & g \\ f & h \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

$$\Rightarrow ae + cf = ae + bg \Rightarrow \frac{b}{c} = \frac{f}{g}$$
 (1)

Also $bg + dh = cf + dh \Rightarrow$ same condition

Then
$$be + df = af + bh$$
 (2) and $ag + ch = ce + dg$ (3)

$$(2) \Rightarrow b(e-h) = f(a-d) \text{ and } (3) \Rightarrow c(h-e) = g(d-a)$$

From (1), $\frac{b}{f} = \frac{c}{g}$ and so both of the above produce the same condition:

$$\frac{b}{f} = \frac{a-d}{e-h} \Rightarrow \frac{a-d}{b} = \frac{e-h}{f}$$
 (4)

Thus, two 2 × 2 matrices commute if the quantities $\frac{b}{c}$ and $\frac{a-d}{b}$ in one matrix match the corresponding quantities in the other.

As an example, we could choose the matrices $\begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$ and $\begin{pmatrix} 5 & g \\ 6 & h \end{pmatrix}$.

Then
$$g = 6 \times \frac{3}{2} = 9$$
 and $\frac{h-5}{6} = \frac{4-1}{2} \Rightarrow h = 14$

Check:
$$\begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 5 & 9 \\ 6 & 14 \end{pmatrix} = \begin{pmatrix} 23 & 51 \\ 34 & 74 \end{pmatrix}$$

and
$$\begin{pmatrix} 5 & 9 \\ 6 & 14 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} 23 & 51 \\ 34 & 74 \end{pmatrix}$$

To test the conditions on a matrix $\begin{pmatrix} a & c \\ b & d \end{pmatrix}$ and its inverse,

$$\frac{1}{ad-bc} \begin{pmatrix} d & -c \\ -b & a \end{pmatrix}$$

(i)
$$\frac{-b/(ad-bc)}{-c/(ad-bc)} = \frac{b}{c}$$

(ii)
$$\frac{(d-a)/(ad-bc)}{-b/(ad-bc)} = \frac{a-d}{b}$$