Matrices - Q2 [Practice/M](26/5/21)
$M=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ represents a transformation.
(i) Under what conditions will $x=0$ be an invariant line?
(ii) Under what conditions will there be an invariant line of the form $x=\lambda$ (where $\lambda \neq 0$)?
$M=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ represents a transformation.
(i) Under what conditions will $x=0$ be an invariant line?
(ii) Under what conditions will there be an invariant line of the form $x=\lambda$ (where $\lambda \neq 0$)?

Solution

(i) Suppose that $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)\binom{0}{y}=\binom{0}{y^{\prime}}$, for all y.

Then $c y=0$ for all y, so that $c=0$
(ii) Suppose that $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)\binom{\lambda}{y}=\binom{\lambda}{y^{\prime}}$, for all y.

Then $a \lambda+c y=\lambda$ for all y, so that $c=0$, and $a=1$

