Matrices - Q22: Inverses [Problem/M](2/6/21)

Assuming that $(A B)^{T}=B^{T} A^{T}$, prove that $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$

Assuming that $(A B)^{T}=B^{T} A^{T}$, prove that $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$

Solution

Let $B=\left(A^{T}\right)^{-1}$, so that $B A^{T}=I$ (1)
Result to prove: $B=\left(A^{-1}\right)^{T}$
[Noting that this is equivalent to $B^{T}=A^{-1}$, it seems promising to involve B^{T}]

From (1), $\left(B A^{T}\right)^{T}=I^{T}=I$, so that $A B^{T}=I$, and hence $B^{T}=A^{-1}$ and $B=\left(A^{-1}\right)^{T}$, as required.

