Matrices - Q21: General [Problem/H] (2/6/21)

Suppose that the following pair of equations enables $\left(x^{\prime}, t^{\prime}\right)$ to be determined from $(x, t)$ :
$x^{\prime}=\gamma(x-v t) \& t^{\prime}=\gamma\left(t-\frac{x v}{c^{2}}\right)$
and that it is also true that
$x=\gamma\left(x^{\prime}+v t^{\prime}\right) \& t=\gamma\left(t^{\prime}+\frac{x^{\prime} v}{c^{2}}\right)$
[These are the transformation equations in Special Relativity between two frames of reference that are moving with a relative speed of $v$. Starting with (A), (B) is obtained by reversing the roles of the two frames (so that the speed is reversed as well).]

Use matrix multiplication to find an expression for $\gamma$ in terms of $v \& c$.

Suppose that the following pair of equations enables $\left(x^{\prime}, t^{\prime}\right)$ to be determined from $(x, t)$ :
$x^{\prime}=\gamma(x-v t) \& t^{\prime}=\gamma\left(t-\frac{x v}{c^{2}}\right)$
and that it is also true that
$x=\gamma\left(x^{\prime}+v t^{\prime}\right) \& t=\gamma\left(t^{\prime}+\frac{x^{\prime} v}{c^{2}}\right)$
[These are the transformation equations in Special Relativity between two frames of reference that are moving with a relative speed of $v$. Starting with (A), (B) is obtained by reversing the roles of the two frames (so that the speed is reversed as well).]

Use matrix multiplication to find an expression for $\gamma$ in terms of $v \& c$.

## Solution

$x^{\prime}=\gamma(x-v t) \& t^{\prime}=\gamma\left(t-\frac{x v}{c^{2}}\right)$
$\Rightarrow\binom{x^{\prime}}{t^{\prime}}=\gamma\left(\begin{array}{cc}1 & -v \\ -\frac{v}{c^{2}} & 1\end{array}\right)\binom{x}{t}$
and $x=\gamma\left(x^{\prime}+v t^{\prime}\right) \& t=\gamma\left(t^{\prime}+\frac{x^{\prime} v}{c^{2}}\right)$
$\Rightarrow\binom{x}{t}=\gamma\left(\begin{array}{cc}1 & v \\ \frac{v}{c^{2}} & 1\end{array}\right)\binom{x^{\prime}}{t^{\prime}}$
Hence $\binom{x^{\prime}}{t^{\prime}}=\gamma\left(\begin{array}{cc}1 & -v \\ -\frac{v}{c^{2}} & 1\end{array}\right) \gamma\left(\begin{array}{cc}1 & v \\ \frac{v}{c^{2}} & 1\end{array}\right)\binom{x^{\prime}}{t^{\prime}}$
and so $\gamma\left(\begin{array}{cc}1 & -v \\ -\frac{v}{c^{2}} & 1\end{array}\right) \gamma\left(\begin{array}{cc}1 & v \\ \frac{v}{c^{2}} & 1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
giving $\gamma^{2}\left(\begin{array}{cc}1-\frac{v^{2}}{c^{2}} & 0 \\ 0 & 1-\frac{v^{2}}{c^{2}}\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
and hence $\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
[This is the Lorentz factor.]

