Matrices – Q18: Determinants [Problem/M](2/6/21)

If $M = \begin{pmatrix} \lambda & k \\ 1 & \lambda - k \end{pmatrix}$, where $\lambda \& k$ are real numbers, what is the range of possible values of k, in order that |M| > 0 for all values of λ ?

If $M = \begin{pmatrix} \lambda & k \\ 1 & \lambda - k \end{pmatrix}$, where $\lambda \& k$ are real numbers, what is the range of possible values of k, in order that |M| > 0 for all values of λ ?

Solution

$$\begin{vmatrix} \lambda & k \\ 1 & \lambda - k \end{vmatrix} > 0 \Rightarrow \lambda(\lambda - k) - k > 0$$
$$\Rightarrow f(\lambda) = \lambda^2 - k\lambda - k > 0$$

This means that the (u-shaped) quadratic curve y = f(x) lies entirely above the x-axis.

This will occur when the discriminant, $(-k)^2 - 4(-k) < 0$

ie
$$k(k+4) < 0$$

$$\Rightarrow -4 < k < 0$$