Matrices - Q15: Eigenvectors [Problem/H](2/6/21)

The populations of sparrows (x) and sparrowhawks (y) in a particular area satisfy the following differential equations:
$\frac{d x}{d t}=0.1 x-2 y$ and $\frac{d y}{d t}=0.1 x+y$
(where time is measured in years),
and initially there are 50 sparrows and 4 sparrowhawks.
The equations can be written as $\binom{\frac{d x}{d t}}{\frac{d y}{d t}}=\left(\begin{array}{cc}0.1 & -2 \\ 0.1 & 1\end{array}\right)\binom{x}{y}$
(i) Express $\left(\begin{array}{cc}0.1 & -2 \\ 0.1 & 1\end{array}\right)$ in the form $P D P^{-1}$, where D is a diagonal matrix.
(ii) Show that $\left(^{*}\right)$ can be rewritten as as $\binom{\frac{d u}{d t}}{\frac{d v}{d t}}=D\binom{u}{v}$
(iii) Show that $u=A e^{0.6 t}$ and $v=B e^{0.5 t}$, where A and B are arbitrary constants, and hence solve the original differential equations.
(iv) What happens to the two populations?

The populations of sparrows (x) and sparrowhawks (y) in a particular area satisfy the following differential equations:
$\frac{d x}{d t}=0.1 x-2 y$ and $\frac{d y}{d t}=0.1 x+y$
(where time is measured in years),
and initially there are 50 sparrows and 4 sparrowhawks.
The equations can be written as $\binom{\frac{d x}{d t}}{\frac{d y}{d t}}=\left(\begin{array}{cc}0.1 & -2 \\ 0.1 & 1\end{array}\right)\binom{x}{y}$
(i) Express $\left(\begin{array}{cc}0.1 & -2 \\ 0.1 & 1\end{array}\right)$ in the form $P D P^{-1}$, where D is a diagonal matrix.
(ii) Show that $\left(^{*}\right)$ can be rewritten as as $\binom{\frac{d u}{d t}}{\frac{d v}{d t}}=D\binom{u}{v}$
(iii) Show that $u=A e^{0.6 t}$ and $v=B e^{0.5 t}$, where A and B are arbitrary constants, and hence solve the original differential equations.
(iv) What happens to the two populations?

Solution

(i) The columns of P will be the eigenvectors of the matrix, and the non-zero elements of D will be the eigenvalues.

The eigenvalues satisfy $\left(\begin{array}{cc}0.1 & -2 \\ 0.1 & 1\end{array}\right)\binom{x}{y}=\lambda\binom{x}{y}$
and the characteristic equation is $(0.1-\lambda)(1-\lambda)-0.1(-2)=$ 0 ,
so that $\lambda^{2}-1.1 \lambda+0.3=0$
$\Rightarrow(\lambda-0.6)(\lambda-0.5)=0$
$\Rightarrow \lambda=0.6$ or 0.5
When $\lambda=0.6$,
$\left(\begin{array}{cc}0.1 & -2 \\ 0.1 & 1\end{array}\right)\binom{x}{y}=0.6\binom{x}{y} \Rightarrow 0.1 x-2 y=0.6 x \Rightarrow y=-0.25 x$
When $\lambda=0.5$,
$\left(\begin{array}{cc}0.1 & -2 \\ 0.1 & 1\end{array}\right)\binom{x}{y}=0.5\binom{x}{y} \Rightarrow 0.1 x-2 y=0.5 x \Rightarrow y=-0.2 x$
So $P=\left(\begin{array}{cc}4 & 5 \\ -1 & -1\end{array}\right)$ and $D=\left(\begin{array}{cc}0.6 & 0 \\ 0 & 0.5\end{array}\right)$
Then $P^{-1}=\frac{1}{1}\left(\begin{array}{cc}-1 & -5 \\ 1 & 4\end{array}\right)$
and $\left(\begin{array}{cc}0.1 & -2 \\ 0.1 & 1\end{array}\right)=\left(\begin{array}{cc}4 & 5 \\ -1 & -1\end{array}\right)\left(\begin{array}{cc}0.6 & 0 \\ 0 & 0.5\end{array}\right)\left(\begin{array}{cc}-1 & -5 \\ 1 & 4\end{array}\right)$
(ii) $\binom{\frac{d x}{d t}}{\frac{d y}{d t}}=P D P^{-1}\binom{x}{y} \Rightarrow P^{-1}\binom{\frac{d x}{d t}}{\frac{d y}{d t}}=D P^{-1}\binom{x}{y}$

Let $\binom{u}{v}=P^{-1}\binom{x}{y}=\left(\begin{array}{cc}-1 & -5 \\ 1 & 4\end{array}\right)\binom{x}{y}=\binom{-x-5 y}{x+4 y}$
Then $\binom{\frac{d u}{d t}}{\frac{d v}{d t}}=\binom{-\frac{d x}{d t}-5 \frac{d y}{d t}}{\frac{d x}{d t}+4 \frac{d y}{d t}}=\left(\begin{array}{cc}-1 & -5 \\ 1 & 4\end{array}\right)\binom{\frac{d x}{d t}}{\frac{d y}{d t}}=P^{-1}\binom{\frac{d x}{d t}}{\frac{d y}{d t}}$
so that $\binom{\frac{d u}{d t}}{\frac{d v}{d t}}=D\binom{u}{v}$, from $(* *)$
(iii) $\binom{\frac{d u}{d t}}{\frac{d v}{d t}}=\left(\begin{array}{cc}0.6 & 0 \\ 0 & 0.5\end{array}\right)\binom{u}{v} \Rightarrow \frac{d u}{d t}=0.6 u \quad \& \frac{d v}{d t}=0.5 v$
$\Rightarrow \int \frac{1}{u} d u=0.6 \int d t \Rightarrow \ln |u|=0.6 t+C$
$\Rightarrow u=A e^{0.6 t}$, and similarly $v=B e^{0.5 t}$
$\binom{u}{v}=P^{-1}\binom{x}{y} \Rightarrow\binom{x}{y}=P\binom{u}{v}=\left(\begin{array}{cc}4 & 5 \\ -1 & -1\end{array}\right)\binom{A e^{0.6 t}}{B e^{0.5 t}}$
so that $x=4 A e^{0.6 t}+5 B e^{0.5 t}$ and $y=-A e^{0.6 t}-B e^{0.5 t}$
Applying the initial conditions,
$50=4 A+5 B$ and $4=-A-B$
$\Rightarrow 50=4 A+5(-A-4) \Rightarrow 70=-A$ and $B=66$
So $x=330 e^{0.5 t}-280 e^{0.6 t}$ and $y=70 e^{0.6 t}-66 e^{0.5 t}$
(iv) The sparrows become extinct when $x=0$
$\Rightarrow 330 e^{0.5 t}=280 e^{0.6 t} \Rightarrow \frac{33}{28}=e^{0.1 t}$
$\Rightarrow t=10 \ln \left(\frac{33}{28}\right)=1.643$ years; ie by the time 20 months have elapsed
$\left(y=0 \Rightarrow 70 e^{0.6 t}=66 e^{0.5 t} \Rightarrow \frac{66}{70}=e^{0.1 t} \Rightarrow t=10 \ln \left(\frac{66}{70}\right)<0\right.$, which can be rejected)

