Matrices - Q14: Eigenvectors [Problem/M] (2/6/21)

For the matrix $M=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ with eigenvalues $\lambda_{1} \& \lambda_{2}$, prove that $\lambda_{1}+\lambda_{2}=a+d$, and also that $\lambda_{1} \lambda_{2}=|M|$
[this can be extended to 3×3 matrices]

For the matrix $M=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ with eigenvalues $\lambda_{1} \& \lambda_{2}$, prove that $\lambda_{1}+\lambda_{2}=a+d$, and also that $\lambda_{1} \lambda_{2}=|M|$
[this can be extended to 3×3 matrices]

Solution

The characteristic equation is $\left|\begin{array}{cc}a-\lambda & c \\ b & d-\lambda\end{array}\right|=0$, so that $(a-\lambda)(d-\lambda)-b c=0$ and $\lambda^{2}-(a+d) \lambda+a d-b c=0$
and the roots $\lambda_{1} \& \lambda_{2}$ satisfy $\lambda_{1}+\lambda_{2}=a+d$ and $\lambda_{1} \lambda_{2}=a d-b c$, as required.

