Matrices – Q14: Eigenvectors [Problem/M](2/6/21)

For the matrix $M = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ with eigenvalues $\lambda_1 \& \lambda_2$, prove that $\lambda_1 + \lambda_2 = a + d$, and also that $\lambda_1 \lambda_2 = |M|$

[this can be extended to 3×3 matrices]

For the matrix $M = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ with eigenvalues $\lambda_1 \& \lambda_2$, prove that $\lambda_1 + \lambda_2 = a + d$, and also that $\lambda_1 \lambda_2 = |M|$

[this can be extended to 3×3 matrices]

Solution

The characteristic equation is $\begin{vmatrix} a - \lambda & c \\ b & d - \lambda \end{vmatrix} = 0$, so that

 $(a - \lambda)(d - \lambda) - bc = 0$ and $\lambda^2 - (a + d)\lambda + ad - bc = 0$

and the roots $\lambda_1 \& \lambda_2$ satisfy $\lambda_1 + \lambda_2 = a + d$ and $\lambda_1 \lambda_2 = ad - bc$, as required.