Matrices - Q13: Eigenvectors [Problem/H] (2/6/21)

Show that 2×2 matrices representing rotations are not diagonalisable.

Show that 2×2 matrices representing rotations are not diagonalisable.

Solution

A matrix representing a rotation can be expressed in the form $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$

The characteristic equation for this matrix is
$\left|\begin{array}{cc}\cos \theta-\lambda & -\sin \theta \\ \sin \theta & \cos \theta-\lambda\end{array}\right|=0$
$\Leftrightarrow(\cos \theta-\lambda)^{2}+\sin ^{2} \theta=0$
$\Leftrightarrow \lambda^{2}-2 \cos \theta \cdot \lambda+1=0$
The discriminant is $4 \cos ^{2} \theta-4$, which is negative for positive θ.
Thus there are no eigenvalues, and hence the matrix cannot be diagonalised.

