Matrices - Q11: Eigenvectors [Problem/H](2/6/21)

Symmetric matrices are always diagonalisable. Prove that this is the case for 2×2 symmetric matrices.

Symmetric matrices are always diagonalisable. Prove that this is the case for 2×2 symmetric matrices.

Solution

Consider $M=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$, with characteristic equation $\left|\begin{array}{cc}a-\lambda & b \\ b & c-\lambda\end{array}\right|=0$
$\Leftrightarrow(a-\lambda)(c-\lambda)-b^{2}=0$
$\Leftrightarrow \lambda^{2}-(a+c) \lambda+a c-b^{2}=0$
The discriminant is $(a+c)^{2}-4\left(a c-b^{2}\right)=(a-c)^{2}+4 b^{2}$,
which is always positive, assuming that $a, b \& c$ are not all zero.
So there will be 2 distinct eigenvalues, and hence 2 linearly independent eigenvectors. Thus M is diagonalisable.

