Matrices – Q11: Eigenvectors [Problem/H](2/6/21)

Symmetric matrices are always diagonalisable. Prove that this is the case for 2×2 symmetric matrices.

Symmetric matrices are always diagonalisable. Prove that this is the case for 2×2 symmetric matrices.

Solution

Consider $M = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$, with characteristic equation $\begin{vmatrix} a - \lambda & b \\ b & c - \lambda \end{vmatrix} = 0$ $\Leftrightarrow (a - \lambda)(c - \lambda) - b^2 = 0$ $\Leftrightarrow \lambda^2 - (a + c)\lambda + ac - b^2 = 0$ The discriminant is $(a + c)^2 - 4(ac - b^2) = (a - c)^2 + 4b^2$,

which is always positive, assuming that *a*, *b* & *c* are not all zero.

So there will be 2 distinct eigenvalues, and hence 2 linearly independent eigenvectors. Thus *M* is diagonalisable.