Matrices - Q10: Eigenvectors [Problem/H] (2/6/21)

Matrices $A \& B$ are said to be 'similar' if $B=P A P^{-1}$ for some matrix P (A need not be diagonal).

Prove that similar matrices have the same characteristic equation, and hence the same eigenvalues.

Matrices $A \& B$ are said to be 'similar' if $B=P A P^{-1}$ for some matrix P (A need not be diagonal).

Prove that similar matrices have the same characteristic equation, and hence the same eigenvalues.

Solution

Let the characteristic equation of A be $\sum a_{r} \lambda^{r}=0$, so that $\sum a_{r} A^{r}=0$. Then $P\left(\sum a_{r} A^{r}\right)=0$, so that $\sum P a_{r} A^{r}=0$.

Then $\left(\sum P a_{r} A^{r}\right) P^{-1}=0$, and hence $\sum P a_{r} A^{r} P^{-1}=0$, so that $\sum a_{r} P A^{r} P^{-1}=0$.

As $B^{r}=\left(P A P^{-1}\right)\left(P A P^{-1}\right) \ldots=P A^{r} P^{-1}$, it follows that $\sum a_{r} B^{r}=0$, and thus B has the same characteristic equation as A.

