Matrices – Q10: Eigenvectors [Problem/H](2/6/21)

Matrices *A* & *B* are said to be 'similar' if $B = PAP^{-1}$ for some matrix *P* (*A* need not be diagonal).

Prove that similar matrices have the same characteristic equation, and hence the same eigenvalues.

Matrices *A* & *B* are said to be 'similar' if $B = PAP^{-1}$ for some matrix *P* (*A* need not be diagonal).

Prove that similar matrices have the same characteristic equation, and hence the same eigenvalues.

Solution

Let the characteristic equation of A be $\sum a_r \lambda^r = 0$, so that $\sum a_r A^r = 0$. Then $P(\sum a_r A^r) = 0$, so that $\sum Pa_r A^r = 0$. Then $(\sum Pa_r A^r)P^{-1} = 0$, and hence $\sum Pa_r A^r P^{-1} = 0$, so that $\sum a_r PA^r P^{-1} = 0$. As $B^r = (PAP^{-1})(PAP^{-1}) \dots = PA^r P^{-1}$, it follows that $\sum a_r B^r = 0$, and thus B has the same characteristic equation as A.