Maclaurin Series - Q5 [Practice/M] (2/6/21)

Use 3 terms of a Maclaurin expansion of $\ln \left(\frac{1+x}{1-x}\right)$ to find an approximate value for $\ln \left(\frac{2}{3}\right)$

Use 3 terms of a Maclaurin expansion of $\ln \left(\frac{1+x}{1-x}\right)$ to find an approximate value for $\ln \left(\frac{2}{3}\right)$

Solution

$\ln \left(\frac{1+x}{1-x}\right)=\ln (1+x)-\ln (1-x)$
$=\left\{x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}-\cdots\right\}$
$-\left\{[-x]-\frac{[-x]^{2}}{2}+\frac{[-x]^{3}}{3}-\frac{[-x]^{4}}{4}+\frac{[-x]^{5}}{5}-\cdots\right\}$
$=2\left\{x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\cdots\right\}$
(valid, provided that $-1<x \leq 1$ and $-1<-x \leq 1$;
ie $-1<x \leq 1$ and $1>x \geq-1$
ie $-1<x<1$)
Suppose that $\frac{1+x}{1-x}=\frac{2}{3}$
Then $3+3 x=2-2 x$, so that $5 x=-1$ and $x=-\frac{1}{5}$
(and this is within the limits of validity).
So $\ln \left(\frac{2}{3}\right) \approx 2\left\{\left[-\frac{1}{5}\right]+\frac{\left[-\frac{1}{5}\right]^{3}}{3}+\frac{\left[-\frac{1}{5}\right]^{5}}{5}\right\}=-0.40546=-0.405$ (3sf)
[The true value of $\ln \left(\frac{2}{3}\right)$ is -0.40547 (5 sf). Note that $x=-\frac{1}{5}$ is closer to the value of 0 (about which the Maclaurin expansion is centred) than $x=\frac{1}{3}$ [giving $\ln \left(1-\frac{1}{3}\right)$], so that greater accuracy is to be expected.]

