Maclaurin Series – Q5 [Practice/M] (2/6/21)

Use 3 terms of a Maclaurin expansion of $ln\left(\frac{1+x}{1-x}\right)$ to find an approximate value for $ln\left(\frac{2}{3}\right)$

Use 3 terms of a Maclaurin expansion of $ln\left(\frac{1+x}{1-x}\right)$ to find an approximate value for $ln\left(\frac{2}{3}\right)$

Solution

$$ln\left(\frac{1+x}{1-x}\right) = ln(1+x) - ln(1-x)$$

$$= \left\{x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \frac{x^{5}}{5} - \cdots\right\}$$

$$-\left\{\left[-x\right] - \frac{\left[-x\right]^{2}}{2} + \frac{\left[-x\right]^{3}}{3} - \frac{\left[-x\right]^{4}}{4} + \frac{\left[-x\right]^{5}}{5} - \cdots\right\}$$

$$= 2\left\{x + \frac{x^{3}}{3} + \frac{x^{5}}{5} + \cdots\right\}$$
(valid, provided that $-1 < x \le 1$ and $-1 < -x \le 1$;
ie $-1 < x \le 1$ and $1 > x \ge -1$
ie $-1 < x < 1$)
Suppose that $\frac{1+x}{1-x} = \frac{2}{3}$
Then $3 + 3x = 2 - 2x$, so that $5x = -1$ and $x = -\frac{1}{5}$
(and this is within the limits of validity).

So
$$ln\left(\frac{2}{3}\right) \approx 2\left\{\left[-\frac{1}{5}\right] + \frac{\left[-\frac{1}{5}\right]^3}{3} + \frac{\left[-\frac{1}{5}\right]^5}{5}\right\} = -0.40546 = -0.405 \text{ (3sf)}$$

[The true value of $ln\left(\frac{2}{3}\right)$ is -0.40547 (5sf). Note that $x = -\frac{1}{5}$ is closer to the value of 0 (about which the Maclaurin expansion is centred) than $x = \frac{1}{3}$ [giving ln $(1 - \frac{1}{3})$], so that greater accuracy is to be expected.]