Maclaurin Series - Q2 [Practice/E] (1/6/21)

Find a Maclaurin expansion (with 3 non-zero terms) for $\sin ^{2} x$ by two methods.

Find a Maclaurin expansion (with 3 non-zero terms) for $\sin ^{2} x$ by two methods.

Solution

Method 1

$\sin ^{2} x=\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right)\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right)$
$=x^{2}+\frac{x^{6}}{(3!)^{2}}+2(x)\left(-\frac{x^{3}}{3!}\right)+2 x\left(\frac{x^{5}}{5!}\right)+\cdots$
$=x^{2}-\frac{x^{4}}{3}+\left(\frac{1}{36}+\frac{1}{60}\right) x^{6}+\cdots$
[though in fact the next term is negative]
$=x^{2}-\frac{x^{4}}{3}+\frac{8}{180} x^{6}+\cdots=x^{2}-\frac{x^{4}}{3}+\frac{2}{45} x^{6}+\cdots$

Method 2

$\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$
$=\frac{1}{2}-\frac{1}{2}\left(1-\frac{(2 x)^{2}}{2!}+\frac{(2 x)^{4}}{4!}-\frac{(2 x)^{6}}{6!}+\cdots\right)$
$x^{2}-\frac{x^{4}}{3}+\frac{2}{45} x^{6}-\cdots$

