Logarithms Q5 (24/6/23)

Write $log_2 3$ in terms of logs to the base 10

Solution

Method 1

Standard result: $log_a b \ log_b c = log_a c$

[*a* is raised to the power of $log_a c$ in order to get to *c*; alternatively, raise *a* to the power of $p = log_a b$, to get to *b*, and then raise *b* to the power of $q = log_b c$, to get to *c*; thus $a^p =$ *b* and $b^q = c$, which gives $(a^p)^q = c$, and hence $a^{pq} = c$, so that $log_a c = pq = log_a b \ log_b c$]

Then $log_b c = \frac{log_{10}c}{log_{10}b}$, so that $log_2 3 = \frac{log_{10}3}{log_{10}2}$

Method 2

Set up an equation, as follows:

Let $log_2 3 = x$

[The advantage of creating an equation is that we then have something that can be manipulated.]

$$\Rightarrow 3 = 2^{x}$$

$$\Rightarrow \log_{10} 3 = x \log_{10} 2$$

$$\Rightarrow \log_{2} 3 = x = \frac{\log_{10} 3}{\log_{10} 2}$$