Logarithms Q5 (24/6/23)

Write $\log _{2} 3$ in terms of logs to the base 10

Solution

Method 1

Standard result: $\log _{a} b \log _{b} c=\log _{a} c$
[a is raised to the power of $\log _{a} c$ in order to get to c; alternatively, raise a to the power of $p=\log _{a} b$, to get to b, and then raise b to the power of $q=\log _{b} c$, to get to c; thus $a^{p}=$ b and $b^{q}=c$, which gives $\left(a^{p}\right)^{q}=c$, and hence $a^{p q}=c$, so that $\left.\log _{a} c=p q=\log _{a} b \log _{b} c\right]$

Then $\log _{b} c=\frac{\log _{10} c}{\log _{10} b}$, so that $\log _{2} 3=\frac{\log _{10} 3}{\log _{10} 2}$

Method 2

Set up an equation, as follows:
Let $\log _{2} 3=x$
[The advantage of creating an equation is that we then have something that can be manipulated.]
$\Rightarrow 3=2^{x}$
$\Rightarrow \log _{10} 3=x \log _{10} 2$
$\Rightarrow \log _{2} 3=x=\frac{\log _{10} 3}{\log _{10} 2}$

