Logarithms Q4 (24/6/23)

Prove that $\int \frac{1}{x} dx = \ln|x|$ for all $x \neq 0$, assuming that $\int \frac{1}{x} dx = \ln x$ for x > 0

Solution

Method 1

If
$$\int \frac{1}{x} dx = \ln x$$
 for $x > 0$, then $\frac{d}{dx}(\ln x) = \frac{1}{x}$ for $x > 0$

For the case where x < 0:

Let
$$y = -x$$
, so that $\frac{d}{dy}(lny) = \frac{1}{y}$, as $y > 0$

[To convert back to *xs*:]

Hence
$$\frac{d}{dx}(lny) \cdot \frac{dx}{dy} = \frac{1}{(-x)}$$

giving
$$\frac{d}{dx}(\ln[-x])(-1) = \frac{1}{(-x)}$$

and so
$$\frac{d}{dx}(\ln|x|) = \frac{1}{x}$$
 for $x < 0$ (*)

and therefore $\int \frac{1}{x} dx = \ln|x|$ for x < 0, as well as x > 0

[Note that the function $y = \ln |x|$ for x < 0 is the reflection in the y-axis of $y = \ln x$ (for x > 0), and therefore has a negative gradient, which agrees with (*).]

Method 2

Referring to the diagram below, where u = -x > 0 & c > 0,

$$\int_{-c}^{x} \frac{1}{t} dt = \int_{-c}^{-u} \frac{1}{t} dt$$

- = (positive) area between graph and t-axis on LHS
- = (positive) area between graph and t-axis on RHS

$$= -\int_{u}^{c} \frac{1}{t} dt = \int_{c}^{u} \frac{1}{t} dt = lnu - lnc$$

As $\int \frac{1}{x} dx$ only differs from $\int_{-c}^{x} \frac{1}{t} dt$ by an arbitrary constant, it follows that, when x < 0, $\int \frac{1}{x} dx = \ln u + C = \ln |-x| + C$, as required.