Logarithms Q4 (24/6/23)

Prove that $\int \frac{1}{x} d x=\ln |x|$ for all $x \neq 0$,
assuming that $\int \frac{1}{x} d x=\ln x$ for $x>0$

Solution

Method 1

If $\int \frac{1}{x} d x=\ln x$ for $x>0$, then $\frac{d}{d x}(\ln x)=\frac{1}{x}$ for $x>0$
For the case where $x<0$:
Let $y=-x$, so that $\frac{d}{d y}(\ln y)=\frac{1}{y}$, as $y>0$
[To convert back to $x s$:]
Hence $\frac{d}{d x}(\ln y) \cdot \frac{d x}{d y}=\frac{1}{(-x)}$
giving $\frac{d}{d x}(\ln [-x])(-1)=\frac{1}{(-x)}$
and so $\frac{d}{d x}(\ln |x|)=\frac{1}{x}$ for $x<0$
and therefore $\int \frac{1}{x} d x=\ln |x|$ for $x<0$, as well as $x>0$
[Note that the function $y=\ln |\mathrm{x}|$ for $x<0$ is the reflection in the y-axis of $y=\ln x($ for $x>0)$, and therefore has a negative gradient, which agrees with (*).]

Method 2

Referring to the diagram below, where $u=-x>0 \& c>0$,

$\int_{-c}^{x} \frac{1}{t} d t=\int_{-c}^{-u} \frac{1}{t} d t$
$=-$ (positive) area between graph and t-axis on LHS
$=-$ (positive) area between graph and t-axis on RHS
$=-\int_{u}^{c} \frac{1}{t} d t=\int_{c}^{u} \frac{1}{t} d t=\ln u-\ln c$
As $\int_{\frac{1}{x}} d x$ only differs from $\int_{-c}^{x} \frac{1}{t} d t$ by an arbitrary constant, it follows that, when $x<0, \int \frac{1}{x} d x=\ln u+C=\ln |-x|+C$, as required.

