Logarithms Q3 (24/6/23)

Prove that $\log _{b} c=\frac{\log _{a} c}{\log _{a} b}$

Solution

Method 1

rtp $\log _{a} b \log _{b} c=\log _{a} c \quad(*)$
Let $b=a^{x} \& c=b^{y}$
Then $c=\left(a^{x}\right)^{y}=a^{x y}$
and $\log _{a} c=x y=\log _{a} b \log _{b} c$, as required

Method 2

$\left(^{*}\right)$ is equivalent to $a^{\log _{a} b \log _{b} c}=a^{\log _{a} c}$ (as $y=a^{x}$ is an increasing function)
ie $\left(a^{\log _{a} b}\right)^{\log _{b} c}=c\left({ }^{* *}\right)$
and the LHS equals $b^{\log _{b} c}=c$, so that $\left({ }^{* *}\right)$ holds, and hence $\left({ }^{*}\right)$ holds as well

Method 3 (informal)

To show that $\log _{a} b . \log _{b} c=\log _{a} c$:
In terms of powers, p takes you from a to b, and q takes you from b to c; so $p q$ takes you from a to c

