Logarithms Q3 (24/6/23)

Prove that $log_b c = \frac{log_a c}{log_a b}$

Solution

Method 1

rtp $log_a b \ log_b c = log_a c$ (*) Let $b = a^x \& c = b^y$ Then $c = (a^x)^y = a^{xy}$ and $log_a c = xy = log_a b \ log_b c$, as required

Method 2

(*) is equivalent to $a^{\log_a b \log_b c} = a^{\log_a c}$ (as $y = a^x$ is an increasing function)

ie $(a^{\log_a b})^{\log_b c} = c$ (**)

and the LHS equals $b^{\log_b c} = c$, so that (**) holds, and hence (*) holds as well

Method 3 (informal)

To show that $log_a b. log_b c = log_a c$:

In terms of powers, *p* takes you from *a* to *b*, and *q* takes you from *b* to *c*; so *pq* takes you from *a* to *c*