Logarithms - Exercises (Sol'ns) (5 pages; 9/1/20)

(1*) Show that
$$\log(4 - \sqrt{15}) = -\log(4 + \sqrt{15})$$

Solution

$$\log(4 - \sqrt{15}) = -\log\left(\frac{1}{4 - \sqrt{15}}\right) = -\log\left(\frac{4 + \sqrt{15}}{16 - 15}\right) = -\log(4 + \sqrt{15})$$

[or $\log(4 - \sqrt{15}) + \log(4 + \sqrt{15}) = \log\{(4 - \sqrt{15})(4 + \sqrt{15})\}$
= $\log(16 - 15) = 0$]

(2*) If k = log₂₄12, write the following in terms of k:
(a) log₂₄2 (b) log₂₄6

Solution

(a)
$$\log_{24} 2 = \log_{24} \left(\frac{24}{12}\right) = \log_{24} 24 - \log_{24} 12 = 1 - k$$

(b) $\log_{24} 6 = \log_{24} \left(\frac{12}{2}\right) = \log_{24} 12 - \log_{24} 2 = k - (1 - k) = 2k - 1$
[or $\log_{24} 6 = \log_{24} \left(\frac{24}{2}\right) = \log_{24} 24 - \log_{24} 4 = 1 - \log_{24} (2^2)$

[or
$$log_{24}6 = log_{24}\left(\frac{24}{4}\right) = log_{24}24 - log_{24}4 = 1 - log_{24}(2^2)$$

= $1 - 2log_{24}2 = 1 - 2(1 - k) = 2k - 1$]

(3*) Is $log_2 3 > \frac{3}{2}$?

Solution

 $log_2 3 > \frac{3}{2} \Leftrightarrow 3 > 2^{\frac{3}{2}}$ (as $y = 2^x$ is an increasing function) $\Leftrightarrow 3^2 > 2^3$ So answer is Yes.

(4*) Write log_2 3 in terms of logs to the base 10

Solution

Method 1

Standard result: $log_a b \ log_b c = log_a c$

[*a* is raised to the power of $log_a c$ in order to get to *c*; alternatively, raise *a* to the power of $p = log_a b$, to get to *b*, and then raise *b* to the power of $q = log_b c$, to get to *c*; thus $a^p =$ *b* and $b^q = c$, which gives $(a^p)^q = c$, and hence $a^{pq} = c$, so that $log_a c = pq = log_a b \ log_b c$]

Then $log_b c = \frac{log_{10}c}{log_{10}b}$, so that $log_2 3 = \frac{log_{10}3}{log_{10}2}$

Method 2

Set up an equation, as follows:

Let $log_2 3 = x$

[The advantage of creating an equation is that we then have something that can be manipulated.]

$$\Rightarrow 3 = 2^{x}$$

$$\Rightarrow \log_{10} 3 = x \log_{10} 2$$

$$\Rightarrow \log_{2} 3 = x = \frac{\log_{10} 3}{\log_{10} 2}$$

(5*) Simplify
$$\frac{\log_x b}{\log_x a}$$

Solution

Without loss of generality , we can suppose that x < a < b, with $x^p = a$

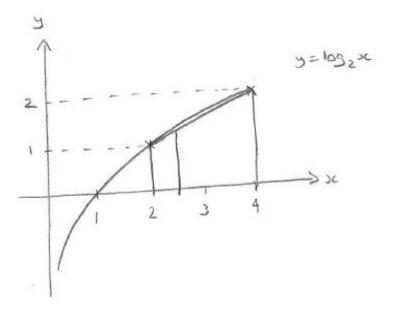
and $a^q = b$, so that $x^{pq} = b$

Then
$$\frac{\log_x b}{\log_x a} = \frac{pq}{p} = \log_a b$$

[or $log_x a. log_a b = log_x b$: in terms of powers, p takes you from x to a, and q takes you from a to b; so pq takes you from x to b]

(6*) [Linear interpolation] By approximating the graph of $y = log_2 x$ by a straight line between x = 2 and x = 4, find an approximate value for $log_2\left(\frac{5}{2}\right)$

Solution

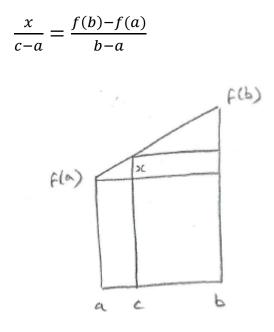


Approach 1: weighted average

$$log_{2}\left(\frac{5}{2}\right) \approx \left(\frac{4-2.5}{4-2}\right) log_{2}2 + \left(\frac{2.5-2}{4-2}\right) log_{2}4$$
$$= (0.75)(1) + (0.25)(2) = 1.25$$

Approach 2: similar triangles

Referring to the diagram below (for the general function f(x))



For our example,

$$\frac{x}{2.5-2} = \frac{2-1}{4-2}$$
,

so that x = (0.5)(0.5) = 0.25, and hence $log_2\left(\frac{5}{2}\right) \approx 1 + 0.25 = 1.25$

Approach 3: Equation of line

The gradient of the line is $\left(\frac{f(b)-f(a)}{b-a}\right)$ Then $f(c) \approx f(a) + \left(\frac{f(b)-f(a)}{b-a}\right)(c-a)$ In this case, $log_2\left(\frac{5}{2}\right) \approx 1 + \left(\frac{2-1}{4-2}\right)(2.5-2) = 1.25$ again. Also $f(a) + \left(\frac{f(b)-f(a)}{b-a}\right)(c-a)$ $= \left(\frac{1}{b-a}\right)\left((b-a)f(a) + (c-a)f(b) - (c-a)f(a)\right)$ $= \left(\frac{1}{b-a}\right)\left((b-c)f(a) + (c-a)f(b)\right),$

which is the weighted average approach