Logarithms (5 pages; 5/6/23)
See also Logarithms (STEP).

Contents

(1) Converting an exponential equation into a logarithmic equation
(2) Logarithm function as the inverse of the exponential function
(3) Taking the logarithm of both sides of an equation
(4) Change of base
(5) Manipulating logarithms

Appendix: Useful results

(1) Converting an exponential equation into a logarithmic equation

Example 1: $2^{x}=9$
The equivalent logarithmic equation takes the form $\log _{a} b=c$ where a is the base (2) and c is the power (x).

This is how the logarithm is defined, and it can be seen to be the power in the exponential equation.

So $\log _{2} 9=x$
Obviously the reverse process could be carried out:
Example 2: $\log _{2} 8=x$
The base is 2 and the power is x.
So $2^{x}=8$, and hence $x=3$ (the exponential equation only helps because 8 is a simple power of 2).

(2) Logarithm function as the inverse of the exponential function

If $y=a^{x}$, then $\log _{a} y=x$
Thus, x is mapped to y by the rule $y=a^{x}$,
and y is mapped to x by the rule $x=\log _{a} y$
Then, in order for this to be expressed as a function with x (rather than y) on the horizontal axis, we write $y=\log _{a} x$

Thus the logarithm function is the opposite of the exponential function, and vice versa. Each is the 'inverse function' of the other.
[Note: $y=a^{x}$ is referred to here as the (general) exponential function, but "the exponential function" is often taken to mean $y=e^{x}$, with other exponential functions described as "an exponential function".]

The graphs of inverse functions are obtained from each other by reflection in the line $y=x$. In this case, $y=a^{x}$ and $x=\log _{a} y$ represent the same graph (as we have only made a rearrangement of the equation), but by converting $x=\log _{a} y$ to $y=\log _{a} x$ we are swapping the roles of $x \& y$, which is equivalent to a reflection in the line $y=x$. See diagram below.

As the logarithmic function is the inverse of the exponential function, and vice versa, the operations of raising to a power and taking the logarithm can be thought of as cancelling each other out, so that $\log _{a}\left(a^{x}\right)=x$ and $a^{\log _{a} x}=x$

(3) Taking the logarithm of both sides of an equation

Example: A population is modelled by the equation $P=a .2^{b t}$
Option 1: Take logs to base 2
$\log _{2} P=\log _{2} a+\log _{2}\left(2^{b t}\right)=\log _{2} a+b t$
(so that if $\log _{2} P$ is plotted against t, a straight line pattern should emerge, if the model is correct; the line has a gradient of b and ' y-intercept' of $\log _{2} a$)

Option 2: Take logs to base 10 (eg if logs to base 2 can't be calculated)
$\log _{10} P=\log _{10} a+\log _{10}\left(2^{b t}\right)=\log _{10} a+b t \cdot \log _{10} 2$
(which, again, is the equation of a straight line).

(4) Change of base

$\log _{a} b \log _{b} c=\log _{a} c$ or $\log _{b} c=\frac{\log _{a} c}{\log _{a} b}$

Proof

Let $b=a^{x} \& c=b^{y}$
Then $c=\left(a^{x}\right)^{y}=a^{x y}$
and $\log _{a} c=x y=\log _{a} b \log _{b} c$

Special case: $\log _{b} c=\frac{1}{\log _{c} b}$

(5) Manipulating logarithms

$$
\text { eg } 3+2 \log _{2} 5=3 \log _{2} 2+\log _{2}\left(5^{2}\right)
$$

$=\log _{2}\left(2^{3}\right)+\log _{2}\left(5^{2}\right)=\log _{2}(8 \times 25)=\log _{2}(200)$

Appendix: Useful results
(1) $\log _{a} b=c \Leftrightarrow a^{c}=b$
(2) $\log _{a} b \log _{b} c=\log _{a} c$ or $\log _{b} c=\frac{\log _{a} c}{\log _{a} b}$

Special case: $\log _{b} c=\frac{1}{\log _{c} b}$

