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Linear Programming - Exercises (Sol'ns)  

(13 pages; 16/8/19) 

(1) Maximise  P = 2𝑥 + 3𝑦 

subject to  𝑥 + 2𝑦 ≤ 12 

                    3𝑥 + 𝑦 ≤ 15                  

                    𝑦 ≤ 5 

                    𝑥 ≥ 0 ,  𝑦 ≥ 0 

Integer values of 𝑥 & 𝑦 are required. 

Solution 

 

 

By considering lines parallel to  2𝑥 + 3𝑦 = 6 (for example), C is 

the optimal solution, if 𝑥& 𝑦 are allowed to take non-integer 

values.  
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At C: 

𝑥 + 2𝑦 = 12  (1) 

3𝑥 + 𝑦 = 15  (2) 

𝑥 + 2𝑦 = 12  (1) 

6𝑥 + 2𝑦 = 30 (3)= 2×(2) 

(3) − (1) ⇒ 5𝑥 = 18 ⇒ 𝑥 =
18

5
= 3.6  

Then  (2) ⇒ 𝑦 = 15 −
54

5
=

21

5
= 4.2 

⇒ 𝑃 = 7.2 + 12.6 = 19.8  

Check: 

At A, P=15 

At B, P=19 

At D, P=10 

(confirming that C is the optimal vertex). 

 

To find integer solutions, consider neighbouring points: 

(3,4): 𝑥 + 2𝑦 = 11, 3𝑥 + 𝑦 = 13,  𝑃 = 18 

(3,5): 𝑥 + 2𝑦 = 13 (reject) 

(4,4): 𝑥 + 2𝑦 = 12, 3𝑥 + 𝑦 = 16 (reject) 

(4,5): 𝑥 + 2𝑦 = 14 (reject) 

 

Thus  a good solution is 𝑥 = 3, 𝑦 = 4, when 𝑃 = 18. 
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However, note that if we consider the point (2,5): 

𝑥 + 2𝑦 = 12, 3𝑥 + 𝑦 = 11,  𝑃 = 19 

Thus, we cannot guarantee to find the optimal solution by the 

above method. 

 

(2) A company makes sofas and upholstered chairs. Each sofa 
requires  1𝑚3 of material and 14 hours of labour to make, and 
sells for a profit of £200. Each chair requires 0.2𝑚3 of material 
and 4 hours of labour to make, and sells for a profit of £30. Given 
that 50𝑚3 of material and 840 hours of labour are available, use 
Linear Programming to find the number of sofas and chairs that 
are required, in order to optimise profit, commenting on your 
answer. 
 
Solution 
 
The objective function to be maximised is: 
 
𝑃 = 200𝑠 + 30𝑐, where 𝑠 and 𝑐 are the numbers of sofas and 
chairs made; 
 
subject to the following constraints: 
 
𝑠 + 0.2𝑐 ≤ 50  or  5𝑠 + 𝑐 ≤ 250 
 
14𝑠 + 4𝑐 ≤ 840  or   7𝑠 + 2𝑐 ≤ 420   

𝑡, 𝑐 ≥ 0 (integers) 

[For exam purposes, you may wish to use a letter other than 𝑠, to 

avoid confusion with the number 5.] 

The diagram (with 𝑠 against 𝑐) shows the constraint lines and 

feasible region, as well as the (dotted) line 6000 = 200𝑠 + 30𝑐, 

which is parallel to the objective function. 
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As the gradient of the line representing the objective function is 

close to that of one of the constraint lines, it may not be clear 

which of the vertices of the feasible region maximises 𝑃 (ie which 

vertex is the last to be passed through, as the  objective function 

moves away from the Origin). Instead we can determine the value 

of P at the two likely vertices: 

At (0,50) [A], 𝑃 = 200(50) = 10000 

At the intersection of the constraint lines [B], 

5𝑠 + 𝑐 = 250  and 7𝑠 + 2𝑐 = 420 , 

so that  10𝑠 + 2𝑐 = 500  and 3𝑠 = 80; 𝑠 =
80

3
 and  𝑐 = 250 −

5 (
80

3
) =

350

3
 

Then  𝑃 = 200 (
80

3
) + 30 (

350

3
) =

26500

3
= 8833 
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So 𝑃 is maximised at 𝐴, where 𝑠 = 50 and 𝑐 = 0, so that 50 sofas 

and no chairs should be made. 

[Had the optimal solution occurred at B, an integer solution would 

need to be found.] 

However, this may not be a sensible solution for the company, for 

the following reasons: 

- customers may wish to buy chairs to go with their sofa 

- customers may be disappointed at the lack of chairs (when they 

are not buying a sofa) 

- the company might prefer to maintain its capacity to make 

chairs 

 
 
(3) Solve the following Linear Programming problem: 
 
Minimise 𝑃 = 3𝑥 + 2𝑦, 
 
subject to 5𝑥 + 3𝑦 ≥ 20 
                    𝑦 ≤ 3𝑥 
                    𝑥 ≥ 0, 𝑦 ≥ 1; 𝑥 & 𝑦 integers 
 
Solution 
 
The diagram shows the constraint lines, as well as the (dotted) 
line 
     3𝑥 + 2𝑦 = 6, which is parallel to the objective function. 
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As the line representing the objective function moves away from 

the Origin, it first enters the feasible region at the intersection of 

5𝑥 + 3𝑦 = 20 and 

𝑦 = 1; ie at the vertex (3
2

5
 , 1). 

To establish an integer solution, consider first of all 𝑥 = 3: 

 

Then 𝑃 = 3𝑥 + 2𝑦, and 5𝑥 + 3𝑦 ≥ 20 , 𝑦 ≤ 3𝑥  & 𝑦 ≥ 1 
 

So 3𝑦 ≥ 5; ie 𝑦 ≥
5

3
 , and  𝑦 ≤ 9, and 𝑦 ≥ 1, 

 
so that 𝑦 = 2 minimises 𝑃 = 3𝑥 + 2𝑦, with 𝑃 = 13. 
 
Then consider 𝑥 = 4, which gives 3𝑦 ≥ 0  and 𝑦 ≤ 12 & 𝑦 ≥ 𝟏 

 so that 𝑦 = 1 minimises 𝑃 = 3𝑥 + 2𝑦,  with 𝑃 = 14. 

Thus the required integer solution is (3,2), with 𝑃 = 13. 

[Strictly speaking, this is just a good integer solution, as it is (just) 

possible that the best integer solution lies elsewhere in the 

feasible region.] 
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(4) It is required to find the shortest distance between A and J in 
the network below. Formulate this as a linear programming 
problem. 
 
 

 

 

Solution 

With AB, AE  etc being binary variables, where 𝐴𝐵 = 1 means that 
the arc AB is travelled along: 
 
Minimise 𝑃 = 5𝐴𝐵 + 9𝐴𝐸 + 10𝐴𝐹 + 12𝐴𝐺 + 7𝐵𝐶 + 7𝐶𝐵 +
8𝐵𝐷 + 8𝐷𝐵 + 3𝐵𝐸 + 3𝐸𝐵 + 4𝐶𝐷 + 4𝐷𝐶 + 6𝐷𝐸 + 6𝐸𝐷 + 7𝐷𝐽 +
3𝐸𝐼 + 3𝐼𝐸 + 3𝐹𝐺 + 3𝐺𝐹 + 2𝐹𝐼 + 2𝐼𝐹 + 5𝐹𝐻 + 5𝐻𝐹 + 5𝐺𝐻 +
5𝐻𝐺 + 3𝐻𝐼 + 3𝐼𝐻 + 5𝐼𝐽   
 
[Arcs not involving A or J can be travelled along in either 
direction, and so are duplicated.] 
 
 
𝐴𝐵 + 𝐴𝐸 + 𝐴𝐹 + 𝐴𝐺 = 1  [the path has to pass along just one of 
the arcs leading from A] 
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𝐷𝐽 + 𝐼𝐽 = 1 [the path has to pass along just one of the arcs leading 
to J] 
 
𝐴𝐵 + 𝐸𝐵 + 𝐷𝐵 + 𝐶𝐵 = 𝐵𝐸 + 𝐵𝐷 + 𝐵𝐶  
 
[if we enter B, then we must leave it - each side will total either 0 
or 1] 
 
𝐵𝐶 + 𝐷𝐶 = 𝐶𝐵 + 𝐶𝐷 [similarly for C] 
 
𝐵𝐷 + 𝐶𝐷 + 𝐸𝐷 = 𝐷𝐵 + 𝐷𝐶 + 𝐷𝐸 + 𝐷𝐽 [D] 
 
𝐴𝐸 + 𝐵𝐸 + 𝐷𝐸 + 𝐼𝐸 = 𝐸𝐵 + 𝐸𝐷 + 𝐸𝐼 [E] 
 
𝐴𝐹 + 𝐺𝐹 + 𝐻𝐹 + 𝐼𝐹 = 𝐹𝐺 + 𝐹𝐻 + 𝐹𝐼 [F] 
 
𝐴𝐺 + 𝐹𝐺 + 𝐻𝐺 = G𝐹 + 𝐺𝐻 [G] 
 
𝐹𝐻 + 𝐺𝐻 + 𝐼𝐻 = 𝐻𝐹 + 𝐻𝐺 + 𝐻𝐼 [H] 
 
𝐸𝐼 + 𝐹𝐼 + 𝐻𝐼 = 𝐼𝐸 + 𝐼𝐹 + 𝐼𝐻 + 𝐼𝐽 [I] 
 

 

(5)  The network below shows the maximum capacity for each 
arc. It is required to maximise the flow across the network, from S 
to T. Formulate this as a linear programming problem. 
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Solution 
 
With SA, AB  etc being non-negative integers, representing the 
flows along the arcs: 
 
Maximise 𝑃 = SA + SE + SH, subject to the following constraints: 
 
𝑆𝐴 ≤ 12, 𝑆𝐸 ≤ 3, 𝑆𝐻 ≤ 5  
𝐴𝐵 ≤ 5, 𝐴𝐶 ≤ 9, 𝐶𝐴 ≤ 9, 𝐴𝐸 ≤ 10, 𝐸𝐴 ≤ 10  
𝐵𝐶 ≤ 3, 𝐶𝐵 ≤ 3, 𝐵𝐷 ≤ 8, 𝐷𝐵 ≤ 8, 𝐵𝑇 ≤ 7  
𝐶𝐷 ≤ 6, 𝐷𝐶 ≤ 6, 𝐶𝐹 ≤ 3, 𝐹𝐶 ≤ 3  
𝐷𝑇 ≤ 4, 𝐺𝐷 ≤ 7  
𝐹𝐸 ≤ 2, 𝐸𝐻 ≤ 5, 𝐻𝐸 ≤ 5  
𝐹𝐺 ≤ 5, 𝐺𝐹 ≤ 5, 𝐹𝐻 ≤ 3, 𝐻𝐹 ≤ 3  
 
Inflows must equal outflows: 
At A: 𝑆𝐴 + 𝐸𝐴 + 𝐶𝐴 = 𝐴𝐸 + 𝐴𝐶 + 𝐴𝐵  
At B: 𝐴𝐵 + 𝐶𝐵 + 𝐷𝐵 = 𝐵𝑇 + 𝐵𝐷 + 𝐵𝐶 
At C: 𝐴𝐶 + 𝐵𝐶 + 𝐷𝐶 + 𝐹𝐶 = 𝐶𝐴 + 𝐶𝐵 + 𝐶𝐷 + 𝐶𝐹 
At D: 𝐵𝐷 + 𝐶𝐷 + 𝐺𝐷 = 𝐷𝐵 + 𝐷𝐶 + 𝐷𝑇 
At E: 𝑆𝐸 + 𝐴𝐸 + 𝐹𝐸 + 𝐻𝐸 = 𝐸𝐴 + 𝐸𝐻 
At F: 𝐶𝐹 + 𝐺𝐹 + 𝐻𝐹 = 𝐹𝐸 + 𝐹𝐶 + 𝐹𝐺 + 𝐹𝐻 
At G: 𝐹𝐺 = 𝐺𝐹 + 𝐺𝐷 
At H: 𝑆𝐻 + 𝐸𝐻 + 𝐹𝐻 = 𝐻𝐸 + 𝐻𝐹 
[The inflow to T will automatically equal the outflow from S.] 



 fmng.uk 

10 
 

 
  

(6) Workers A-E are to be allocated tasks, so that each worker 
carries out one task, and each task is carried out by one worker. 
The table below shows the tasks that each worker is trained to do. 
The aim is to match up workers to tasks in such a way that as 
many workers as possible are occupied. Formulate this as a linear 
programming problem. 
 

 1 2 3 4 5 

A  Y Y  Y 

B Y Y    

C  Y  Y Y 

D Y  Y   

E  Y  Y  

 
Solution 
 
With A2, A3, ... , E4 being binary variables, where 𝐴2 = 1 means 
that worker A carries out task 2: 
 
Maximise    𝑃 = 𝐴2 + 𝐴3 + 𝐴5 + 𝐵1 + 𝐵2 + 𝐶2 + 𝐶4 + 𝐶5 + 𝐷1 +
𝐷3 + 𝐸2 + 𝐸4  
 
[ie maximise the number of matchings] 
 
subject to the following constraints: 
 
𝐴2 + 𝐴3 + 𝐴5 ≤ 1 [ie at most one of 𝐴2, 𝐴3, 𝐴5 can be 1] 

𝐵1 + 𝐵2 ≤ 1  

𝐶2 + 𝐶4 + 𝐶5 ≤ 1  

𝐷1 + 𝐷3 ≤ 1  

𝐸2 + 𝐸4 ≤ 1  
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𝐵1 + 𝐷1 ≤ 1 [ie at most one of 𝐵1, 𝐷1 can be 1] 

𝐴2 + 𝐵2 + 𝐶2 + 𝐸2 ≤ 1  

𝐴3 + 𝐷3 ≤ 1  

𝐶4 + 𝐸4 ≤ 1  

𝐴5 + 𝐶5 ≤ 1  

 
(7)(i) Workers A-E are to be allocated tasks, so that each worker 
carries out one task, and each task is carried out by one worker. 
The table below shows the time taken to train each worker for 
each task. The aim is to minimise the time spent on training. 
Formulate this as a linear programming problem. 
 

 1 2 3 4 5 

A 4 3 7 2 6 

B 2 5 5 4 5 

C 3 6 2 6 7 

D 4 3 5 7 3 

E 3 5 7 4 4 

 
(ii) If in fact worker A cannot carry out task 1, what modification 
would be necessary? 
 
Solution 
 
(i) With A1, A2, ... , E5 being binary variables, where 𝐴1 = 1 
means that worker A carries out task 1: 
 
Minimise    𝑃 = 4𝐴1 + 3𝐴2 + ⋯ + 4𝐸5 
 
[ie minimise the total time spent on training] 
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subject to the following constraints: 
 
𝐴1 + 𝐴2 + 𝐴3 + 𝐴4 + 𝐴5 = 1 [just one of 𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5 must 
be 1] 
 
and similarly for B, C, D & E. 

𝐴1 + 𝐵1 + 𝐶1 + 𝐷1 + 𝐸1 = 1  

and similarly for 2,3,4 & 5 

 
(ii) To allow for the fact that worker A cannot carry out task 1, 
increase the element of the table in row A and column 1 from 4 to 
a large number, such as 100. 

 
 
(8) A company has 3 warehouses (A,B & C) producing identical 
items. These have to be delivered to 4 shops, in such  a way as to 
minimise the total transportation cost. These costs are shown in 
the table below, together with the number of items available at 
each warehouse (the 'supply'), and the number of items required 
by each shop (the 'demand'). The aim is to decide how many 
items each warehouse should deliver to each shop. Formulate this 
as a linear programming problem. 
 
 demand: 10 11 8 6 

supply:  1 2 3 4 

12 A 7 4 5 2 

13 B 3 6 4 6 

10 C 8 3 4 5 
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Solution 

With A1, A2, ... , C4 being non-negative integers, so that A1 is the 
number of items transported from warehouse A to shop 1: 
 
Minimise 𝑃 = 7𝐴1 + 4𝐴2 + ⋯ + 5𝐶4, 
 
subject to the following constraints: 
 
𝐴1 + 𝐴2 + 𝐴3 + 𝐴4 = 12  
𝐵1 + 𝐵2 + 𝐵3 + 𝐵4 = 13  
𝐶1 + 𝐶2 + 𝐶3 + 𝐶4 = 10  

𝐴1 + 𝐵1 + 𝐶1 = 10  

𝐴2 + 𝐵2 + 𝐶2 = 11  

𝐴3 + 𝐵3 + 𝐶3 = 8  

𝐴4 + 𝐵4 + 𝐶4 = 6  
 


