Linear Interpolation - Q1 [Practice/E](8/6/21)

By approximating the graph of $y=\log _{2} x$ by a straight line between $x=2$ and $x=4$, find an approximate value for $\log _{2}\left(\frac{5}{2}\right)$

By approximating the graph of $y=\log _{2} x$ by a straight line between $x=2$ and $x=4$, find an approximate value for $\log _{2}\left(\frac{5}{2}\right)$

Solution

Approach 1: weighted average
$\log _{2}\left(\frac{5}{2}\right) \approx\left(\frac{4-2.5}{4-2}\right) \log _{2} 2+\left(\frac{2.5-2}{4-2}\right) \log _{2} 4$
$=(0.75)(1)+(0.25)(2)=1.25$

Approach 2: similar triangles
Referring to the diagram below (for the general function $f(x)$)
$\frac{x}{c-a}=\frac{f(b)-f(a)}{b-a}$

For our example,
$\frac{x}{2.5-2}=\frac{2-1}{4-2}$,
so that $x=(0.5)(0.5)=0.25$, and hence $\log _{2}\left(\frac{5}{2}\right) \approx 1+0.25=$ 1.25

Approach 3: Equation of line
The gradient of the line is $\left(\frac{f(b)-f(a)}{b-a}\right)$
Then $f(c) \approx f(a)+\left(\frac{f(b)-f(a)}{b-a}\right)(c-a)$
In this case, $\log _{2}\left(\frac{5}{2}\right) \approx 1+\left(\frac{2-1}{4-2}\right)(2.5-2)=1.25$ again.
Also $f(a)+\left(\frac{f(b)-f(a)}{b-a}\right)(c-a)$
$=\left(\frac{1}{b-a}\right)((b-a) f(a)+(c-a) f(b)-(c-a) f(a))$
$=\left(\frac{1}{b-a}\right)((b-c) f(a)+(c-a) f(b))$,
which is the weighted average approach

