Integration Theory (6 pages; 4/6/23)

Contents

(A) The two interpretations of integration
(B) Indefinite integration
(C) Fundamental Theorem of Calculus
(D) $\int \frac{1}{x} d x=\ln |x|$

(A) The two interpretations of integration

Integration can be interpreted as either the area under a curve, or as the opposite of differentiation. To show how these two interpretations can be reconciled, refer to the diagram below.

$v \& s$ can be interpreted as speed and displacement, but the argument holds for other situations. s is defined to be the area under the curve of v, and, by the first definition of integration,

$$
s=\int v d t(\mathrm{~A})
$$

(to work out a specific area, limits would obviously be needed).
We want to show that integration is also the opposite of differentiation. This will be the case if $\frac{d s}{d t}=v$

From the diagram, $\frac{d s}{d t}$ is the rate at which the area increases, and is the limit as $\delta t \rightarrow 0$ of $\frac{\delta s}{\delta t}$, which equals v, since $\delta s \rightarrow v \delta t$ as $\delta t \rightarrow 0$. Thus we have shown that $\frac{d s}{d t}=v$.

In the case where $v \& s$ are speed and displacement, this works because speed is the rate of change of displacement, and displacement $=$ speed \times time if the speed is constant (so that the displacement is the area under a horizontal line), and the natural extension of this is for the displacement to be the area under the speed-time graph in the case of a varying speed.

(B) Indefinite integration

In the definite integral $\int_{t_{1}}^{t_{2}} v(t) d t, t$ is appearing as a parameter (which ranges from t_{1} to t_{2}). It can just as easily be written as $\int_{t_{1}}^{t_{2}} v(x) d x$

If t_{2} is now considered to be a variable value of t, so that the definite integral represents the area under the curve as a function of t_{2}, then, writing t instead of $t_{2}: \int_{t_{1}}^{t} v(x) d x=s(t)-s\left(t_{1}\right)$
(where $v(x)$ is the derivative of $s(x)$; eg speed and displacement, respectively).

The integral is now a function of t (whereas the definite integral $\int_{t_{1}}^{t_{2}} v(t) d t$ was a fixed value).

It is termed an 'indefinite' integral and, by convention, the following notation is adopted: $\int v(t) d t=s(t)+C$
C in effect equals $-s\left(t_{1}\right)$ and is a constant ; ie not changing with t (C is the 'constant of integration'). It can take any value (including positive values, since $s\left(t_{1}\right)$ can generally be made to be negative).

Note that t has been reintroduced on the left hand side, as it can no longer be confused with the upper limit of integration. This notation is slightly unsatisfactory, since the t on the left hand side is a parameter over which the integration is being carried out, whereas the t on the right hand side is the upper limit of the integration. However, the t on the left hand side does serve to indicate that the integral is to be a function of t.

(C) Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus states that
if $F(x)=\int_{a}^{x} f(t) d t$, then $F^{\prime}(x)=f(x)$

Proof

$\delta F \approx f(t) \delta t \Rightarrow \frac{\delta F}{\delta t} \approx f(t)$
$F^{\prime}(t)$ or $\frac{d F}{d t}=\lim _{\delta t \rightarrow 0} \frac{\delta F}{\delta t}=f(t)$
and at $t=x, F^{\prime}(x)=f(x)$
(C) $\int \frac{1}{x} d x=\ln |x|$

Given that $\int \frac{1}{x} d x=\ln x$ for $x>0$, it can be shown that $\int \frac{1}{x} d x=\ln |x|$ for all $x \neq 0$

Method 1

If $\int \frac{1}{x} d x=\ln x$ for $x>0$, then $\frac{d}{d x}(\ln x)=\frac{1}{x}$ for $x>0$
For the case where $x<0$:
Let $y=-x$, so that $\frac{d}{d y}(\ln y)=\frac{1}{y}$, as $y>0$
[To convert back to $x s$:]
Then, as $\frac{d}{d y}(\ln y)=\frac{d}{d x}(\ln y) \cdot \frac{d x}{d y}$,
it follows that $\frac{d}{d x}(\ln y) \cdot \frac{d x}{d y}=\frac{1}{(-x)}$
giving $\frac{d}{d x}(\ln [-x])(-1)=\frac{1}{(-x)}$
and so $\frac{d}{d x}(\ln |x|)=\frac{1}{x}$ for $x<0$
and therefore $\int \frac{1}{x} d x=\ln |x|$ for $x<0$, as well as $x>0$
[Note that the function $y=\ln |\mathrm{x}|$ for $x<0$ is the reflection in the y-axis of $y=\ln x($ for $x>0)$, and therefore has a negative gradient, which agrees with (*).]

Method 2

Referring to the diagram below, where $u=-x>0 \& c>0$,

$\int_{-c}^{x} \frac{1}{t} d t=\int_{-c}^{-u} \frac{1}{t} d t$
$=-$ (positive) area between graph and t-axis on LHS
$=-$ (positive) area between graph and t-axis on RHS
$=-\int_{u}^{c} \frac{1}{t} d t=\int_{c}^{u} \frac{1}{t} d t=\ln u-\ln c$
As $\int \frac{1}{x} d x$ only differs from $\int_{-c}^{x} \frac{1}{t} d t$ by an arbitrary constant, it follows that, when $x<0, \int \frac{1}{x} d x=\ln u+C=\ln |-x|+C$, as required.

