Integration - Q8: Volume of Revolution (21/11/23)

The region bounded by the curve $y=\frac{1}{x}$, the lines $x=1, x=2$, and the x-axis is rotated about the y-axis through 360°. Find the volume generated.

Solution

The region can be divided into two parts: the rectangle at the bottom, with base 1 and height $\frac{1}{2}$ (A), and the remainder (B).

Volume $=\pi\left(2^{2}-1^{2}\right)\left(\frac{1}{2}\right)+\pi \int_{\frac{1}{2}}^{1} x^{2}-1^{2} d y$
$=\frac{3 \pi}{2}+\pi \int_{\frac{1}{2}}^{1} y^{-2}-1^{2} d y$
$=\frac{3 \pi}{2}+\pi\left[-y^{-1}-y\right] \frac{1}{2}$
$=\frac{3 \pi}{2}+\pi\left(-2-\left[-\frac{5}{2}\right]\right)$
$=2 \pi$

