Integration - Q7: Surface Area (21/11/23)

Use integration with respect to a suitable parameter to show that the surface area of a sphere of radius r is $4 \pi r^{2}$.

Solution
Consider the hemisphere obtained by rotating a quarter circle about the x-axis, as in the diagram below.

Surface area of hemisphere $=\int_{t_{1}}^{t_{2}} 2 \pi y \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$
$=\int_{0}^{\frac{\pi}{2}} 2 \pi(r \sin t) \sqrt{(-r \sin t)^{2}+(r \cos t)^{2}} d t$
$=2 \pi r^{2} \int_{0}^{\frac{\pi}{2}} \sin t d t$
$=2 \pi r^{2}[-\cos t]_{0}^{\frac{\pi}{2}}$
$=2 \pi r^{2}(0-(-1))$
$=2 \pi r^{2}$
Then the surface area of the sphere is double this, to give $4 \pi r^{2}$.

