Integration - Q5 [Problem/H] (21/11/23)

Given that $\int \frac{1}{x} dx = \ln x$ for x > 0, show that $\int \frac{1}{x} dx = \ln |x|$ for all $x \neq 0$

Solution

Method 1

If $\int \frac{1}{x} dx = \ln x$ for x > 0, then $\frac{d}{dx}(\ln x) = \frac{1}{x}$ for x > 0For the case where x < 0: Let y = -x, so that $\frac{d}{dy}(\ln y) = \frac{1}{y}$, as y > 0[To convert back to xs:] Then, as $\frac{d}{dy}(\ln y) = \frac{d}{dx}(\ln y) \cdot \frac{dx}{dy}$, it follows that $\frac{d}{dx}(\ln y) \cdot \frac{dx}{dy} = \frac{1}{(-x)}$ giving $\frac{d}{dx}(\ln [-x])(-1) = \frac{1}{(-x)}$ and so $\frac{d}{dx}(\ln |x|) = \frac{1}{x}$ for x < 0 (*) and therefore $\int \frac{1}{x} dx = \ln |x|$ for x < 0, as well as x > 0[Note that the function $y = \ln |x|$ for x < 0 is the reflection in the

[Note that the function $y = \ln |x|$ for x < 0 is the reflection in the y-axis of $y = \ln x$ (for x > 0), and therefore has a negative gradient, which agrees with (*).]

Method 2

Referring to the diagram below, where u = -x > 0 & c > 0,

 $\int_{-c}^{x} \frac{1}{t} dt = \int_{-c}^{-u} \frac{1}{t} dt$ = - (positive) area between graph and *t*-axis on LHS = - (positive) area between graph and *t*-axis on RHS = $-\int_{u}^{c} \frac{1}{t} dt = \int_{c}^{u} \frac{1}{t} dt = lnu - lnc$ As $\int \frac{1}{x} dx$ only differs from $\int_{-c}^{x} \frac{1}{t} dt$ by an arbitrary constant, it

follows that, when x < 0, $\int \frac{1}{x} dx = \ln u + C = \ln|-x| + C$, as