Integration - Q3: Volume of Revolution (21/11/23)

The region between the line $y=6-2 x$ and the curve $y=\frac{4}{x}$ is rotated about the y-axis through 360°. Find the exact volume generated.

Solution

To find the points of intersection of the line and curve:
$y=6-2 x$ and $y=\frac{4}{x} \Rightarrow \frac{4}{x}=6-2 x$,
so that $4=6 x-2 x^{2}$, or $x^{2}-3 x+2=0$
$\Rightarrow(x-1)(x-2)=0$,
so that the points of intersection are $(1,4)$ and $(2,2)$.

For the line, $x=3-\frac{y}{2}$, and for the curve, $x=\frac{4}{y}$
The required volume is $\int_{2}^{4} \pi\left\{\left(3-\frac{y}{2}\right)^{2}-\left(\frac{4}{y}\right)^{2}\right\} d y$
$=\pi \int_{2}^{4} 9-3 y+\frac{y^{2}}{4}-\frac{16}{y^{2}} d y$
$=\pi\left[9 y-\frac{3 y^{2}}{2}+\frac{y^{3}}{12}+\frac{16}{y}\right]_{2}^{4}$
$=\pi\left\{\left(36-24+\frac{16}{3}+4\right)-\left(18-6+\frac{2}{3}+8\right)\right\}$
$=\pi\left\{-4+\frac{14}{3}\right\}=\frac{2 \pi}{3}$ units 3

