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Integration Ideas (STEP) (5 pages; 17/7/23)       

Refer to Pure: "Integration Methods" first. 

 

(1) The standard substitution method is to write an integral in the  

form ∫ 𝑓(𝑥)ℎ(𝑔(𝑥)) 𝑑𝑥, where ∫ 𝑓(𝑥)𝑑𝑥 = 𝑔(𝑥), and then the  

substitution 𝑢 = 𝑔(𝑥) will work, provided that ℎ(𝑢) can be  

integrated. 

 

In some cases it may be easier to spot a derivative, rather than an  

integral. For example, ∫ 𝑠𝑒𝑐𝑥(𝑠𝑒𝑐𝑥 + 𝑡𝑎𝑛𝑥)𝑛𝑑𝑥  

= ∫(𝑠𝑒𝑐𝑥 + 𝑡𝑎𝑛𝑥)𝑛−1(𝑠𝑒𝑐2𝑥 + 𝑠𝑒𝑐𝑥𝑡𝑎𝑛𝑥)𝑑𝑥  

=
1

𝑛
(𝑠𝑒𝑐𝑥 + 𝑡𝑎𝑛𝑥)𝑛 (+𝑐) 

[Note that the term (𝑠𝑒𝑐𝑥 + 𝑡𝑎𝑛𝑥)𝑛−1 is bound to be the ℎ(𝑔(𝑥)), 

so we need to be looking out for 
𝑑

𝑑𝑥
(𝑠𝑒𝑐𝑥 + 𝑡𝑎𝑛𝑥)] 

 

(2) It might be possible to rearrange an integrand into the form 

𝑓(𝑥)𝑔′(𝑥) + 𝑓′(𝑥)𝑔(𝑥) + ℎ(𝑥),  where ℎ(𝑥) can be integrated  

easily, in which case  ∫ 𝑓(𝑥)𝑔′(𝑥) + 𝑓′(𝑥)𝑔(𝑥) 𝑑𝑥 = 𝑓(𝑥)𝑔(𝑥) 

[from the product rule for differentiation, or integration by parts] 

Example: ∫ 2√1 + 𝑥3 +
3𝑥3

√1+𝑥3
 𝑑𝑥  

∫ 2√1 + 𝑥3 𝑑𝑥 = 2𝑥√1 + 𝑥3 − ∫ 2𝑥.
1

2
(3𝑥2)

√1+𝑥3
 𝑑𝑥  (by Parts), 

so that ∫ 2√1 + 𝑥3 +
3𝑥3

√1+𝑥3
 𝑑𝑥 = 2𝑥√1 + 𝑥3 + 𝑐 
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(3) Questions that can be written in the form “Show that  

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝑔(𝑏) − 𝑐" may be tackled by establishing that  

𝑑

𝑑𝑥
𝑔(𝑥) = 𝑓(𝑥) and that  𝑔(𝑎) = 𝑐 (where typically 𝑎 might equal  

0). 

 

(4) To find ∫ 𝑓(𝑥)𝑑𝑥 = 𝑔(𝑥) , it might be the case that 𝑔(𝑥) 

appears in a previous part of a question. Differentiate 𝑔(𝑥) to see 

if this is the case. [See STEP 2016, P2, Q7(iv)] 

 

(5) 𝑢 = 1/𝑥  is a potentially useful substitution 

Example: 𝐼 = ∫
1

𝑥√1−𝑥2
𝑑𝑥 

Let  𝑢 = 1/𝑥  so that  𝑑𝑢 = −1/𝑥2𝑑𝑥  and 𝑑𝑥 = −𝑥2𝑑𝑢, 

so that   𝐼 = − ∫
𝑢𝑥2

√1−
1

𝑢2

 𝑑𝑢 = − ∫
𝑢2𝑥2

√𝑢2−1
 𝑑𝑢 

= − ∫
1

√𝑢2−1
 𝑑𝑢 = −𝑎𝑟𝑐𝑜𝑠ℎ𝑢 = −𝑎𝑟𝑐𝑜𝑠ℎ( 1/𝑥)  

 

(6) Substitutions in definite integrals  

Look for a substitution that reverses the limits (and then take 

advantage of the fact that ∫ 𝑓(𝑥)𝑑𝑥 = −
𝑏

𝑎 ∫ 𝑓(𝑥)𝑑𝑥
𝑎

𝑏
 ). 

(i) ∫ 𝑓(𝑥)𝑑𝑥
∞

0
 : When 𝑢 =

1

𝑥
 , ∫  

∞

0
→ ∫  

0

∞
 

(ii) ∫ 𝑓(𝑥)𝑑𝑥
𝑎

0
 : When 𝑢 = 𝑎 − 𝑥 , ∫  

𝑎

0
→ ∫  

0

𝑎
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Example (from STEP 2015, P3, Q1) 

𝐼 = ∫ 𝑓 (𝑥 +
1

𝑥
) 𝑑𝑥

∞

0
, 𝐽 = ∫

1

𝑥2
𝑓 (𝑥 +

1

𝑥
) 𝑑𝑥

∞

0
  

Let 𝑢 =
1

𝑥
 , so that 𝑑𝑢 = −

1

𝑥2  𝑑𝑥 

Then  𝐽 = ∫ 𝑓 (
1

𝑢
+ 𝑢) (−𝑑𝑢) = ∫ 𝑓 (𝑢 +

1

𝑢
) 𝑑𝑢 = 𝐼

∞

0

0

∞
 

[Note that 𝑥 +
1

𝑥
→

1

𝑢
+ 𝑢] 

 

(7) Inequalities of the form ∫ 𝑓(𝑥)𝑑𝑥
𝜆

𝑎
> 𝑔(𝜆) can sometimes be 

proved by rewriting 𝑔(𝜆) as ∫ ℎ(𝑥)𝑑𝑥
𝜆

𝑎
 (by differentiating 𝑔(𝑥) to 

obtain ℎ(𝑥), if 𝑔(𝑎) = 0) and then showing that 

∫ 𝑓(𝑥) − ℎ(𝑥) 𝑑𝑥 > 0
𝜆

𝑎
 , by rearranging 𝑓(𝑥) − ℎ(𝑥) into an  

expression that is positive for 𝑎 < 𝑥 < 𝜆 

 

(8) When manipulating an inequality involving an integral, it may 

be possible to simplify the integrand, as shown in the following 

example: 

∫ (𝑠𝑒𝑐𝑥𝑐𝑜𝑠𝜆 + 𝑡𝑎𝑛𝑥)𝑛 𝑑𝑥 <
𝜆

0 ∫ (𝑠𝑒𝑐𝑥𝑐𝑜𝑠𝑥 + 𝑡𝑎𝑛𝑥)𝑛 𝑑𝑥
𝜆

0
, 

as 𝑥 < 𝜆 ⇒ 𝑐𝑜𝑠𝑥 > 𝑐𝑜𝑠𝜆 (given that 0 < 𝜆 <
𝜋

2
), 

= ∫ (1 + 𝑡𝑎𝑛𝑥)𝑛 𝑑𝑥
𝜆

0
  

[See STEP 2021, P3, Q3] 

 

(9) Alternative substitutions 

𝑠𝑒𝑐𝜃 can often be used instead of 𝑐𝑜𝑠ℎ𝑥, and 𝑡𝑎𝑛𝜃 instead of 

𝑠𝑖𝑛ℎ𝑥. 
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(10) ∫ sin(𝑚𝑥) cos(𝑛𝑥) 𝑑𝑥 =
1

2
∫ sin(𝑚 + 𝑛) 𝑥 + sin(𝑚 − 𝑛) 𝑥 𝑑𝑥  

 

(11) t = tan(
𝑥

2
) substitution 

The substitution t = tan(
𝑥

2
) is usually a method of last resort: it 

can convert an integrand involving trig. functions to one involving 

polynomial expressions. 

t = tan(
𝑥

2
) ⇒  𝑡𝑎𝑛𝑥 =

2𝑡

1−𝑡2 

Referring to the right-angled triangle shown, 

the hypotenuse = √(1 − 𝑡2)2 + 4𝑡2 

= √1 + 2𝑡2 + 𝑡4  = 1+𝑡2  (conveniently) 

𝑑𝑡

𝑑𝑥
 = 𝑠𝑒𝑐2 (

𝑥

2
) . 

1

2
   ,  so that  

𝑑𝑥

𝑑𝑡
 =   

2

𝑠𝑒𝑐2(
𝑥

2
)

  =   
2

1+𝑡2 

 

Example:  ∫ 𝑠𝑒𝑐𝑥  𝑑𝑥 =  ∫
1+𝑡2

1−𝑡2 . 
2

1+𝑡2  dt   = 2∫
1

1−𝑡2  𝑑𝑡 

= ∫
1

1−𝑡
+  

1

1+𝑡
  𝑑𝑡 = - ln|1-t| + ln|1+t| = ln|

1+𝑡

1−𝑡
| = ln |

1+2𝑡+𝑡2

1−𝑡2 | 

= ln|
1+𝑡2

1−𝑡2 + 
2𝑡

1−𝑡2 | = ln|𝑠𝑒𝑐𝑥 + 𝑡𝑎𝑛𝑥| 

 

(12)  ∫ 𝑓(−𝑥) 𝑑𝑥
𝑎

−𝑎
= ∫ 𝑓(𝑥) 𝑑𝑥

𝑎

−𝑎
 

Proof 

Let 𝑢 = −𝑥, so that 𝑑𝑢 = −𝑑𝑥, and 

∫ 𝑓(−𝑥) 𝑑𝑥
𝑎

−𝑎
= ∫ 𝑓(𝑢)(−𝑑𝑢)

−𝑎

𝑎
= ∫ 𝑓(𝑢) 𝑑𝑢

𝑎

−𝑎
= ∫ 𝑓(𝑥) 𝑑𝑥

𝑎

−𝑎
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[Alternatively, considering the integral as an area under a curve, 

note that 𝑓(−𝑥) is the reflection of 𝑓(𝑥) about the 𝑦-axis, so that 

∫ 𝑓(−𝑥) 𝑑𝑥
0

−𝑎
= 𝐵 = ∫ 𝑓(𝑥) 𝑑𝑥

𝑎

0
  (referring to the diagram below) 

and ∫ 𝑓(−𝑥) 𝑑𝑥
𝑎

0
= 𝐴 = ∫ 𝑓(𝑥) 𝑑𝑥

0

−𝑎
, 

so that  ∫ 𝑓(−𝑥) 𝑑𝑥
𝑎

−𝑎
= 𝐵 + 𝐴 = 𝐴 + 𝐵 = ∫ 𝑓(𝑥) 𝑑𝑥

𝑎

−𝑎
 

 

 

 

 

 

 

 

(13)  ∫ 𝑓(a − 𝑥) 𝑑𝑥
𝑎

0
= ∫ 𝑓(𝑥) 𝑑𝑥

𝑎

0
 

Proof 

Let 𝑢 = 𝑎 − 𝑥 , so that 𝑑𝑢 = −𝑑𝑥   and 

∫ 𝑓(a − 𝑥) 𝑑𝑥
𝑎

0
= ∫ 𝑓(u) (−du) = ∫ 𝑓(𝑢) 𝑑𝑢 = ∫ 𝑓(𝑥) 𝑑𝑥

𝑎

0

𝑎

0

0

a
  

[Note that 𝑓(a − 𝑥) is the reflection of 𝑓(𝑥) about 𝑥 =
𝑎

2
.] 

 

(14) To find  ∫ 𝑐𝑜𝑠𝑒𝑐ℎ2𝑥 𝑑𝑥, note that 
𝑑

𝑑𝑥
(𝑡𝑎𝑛ℎ𝑥) = 𝑠𝑒𝑐ℎ2𝑥  and 

establish that  
𝑑

𝑑𝑥
(𝑐𝑜𝑡ℎ𝑥) = −𝑐𝑜𝑠𝑒𝑐ℎ2𝑥 


