Inequalities - Exercises (Sol'ns)(6 pages; 9/1/20)

(1*) How would you solve the inequality: $\frac{1}{x} < x$?

Solution

Method 1: Multiply both sides by x^2

Method 2: Treat the cases x < 0 and x > 0 separately

Method 3: Rearrange as $\frac{1}{x} - x < 0$

Method 4: Sketch $y = \frac{1}{x}$ and y = x, and consider points of intersection

$$(2^*) \operatorname{Is} \frac{6}{7} < \frac{2}{\sqrt{5}}?$$

Solution

$$\frac{6}{7} < \frac{2}{\sqrt{5}} \Leftrightarrow \frac{36}{49} < \frac{4}{5}$$

$$49 \times 0.8 = \frac{1}{10} (320 + 72) = 39.2 > 36$$
So $\frac{36}{49} < \frac{39.2}{49} = 0.8 = \frac{4}{5}$

Answer is Yes.

(3*) Which is larger: $\frac{\sqrt{7}}{2}$ or $\frac{1+\sqrt{6}}{3}$ (without using a calculator)?

Solution

Considering the difference of squares:

fmng.uk

$$\frac{7}{4} - \frac{(1+2\sqrt{6}+6)}{9} = \frac{63-28-8\sqrt{6}}{36} > \frac{35-8(3)}{36} > 0$$
; so $\frac{\sqrt{7}}{2}$ is larger

[Another approach is to investigate $\frac{\left(\frac{7}{4}\right)}{\left(\frac{7+2\sqrt{6}}{9}\right)} = \frac{63(7-2\sqrt{6})}{4(49-24)} =$

 $\frac{63(7-2\sqrt{6})}{100}$, but it isn't as easy to show that this expression is greater than 1]

(4*) Show that
$$e^3 > 4e^{\frac{3}{2}}$$

Solution

An equivalent result to prove is $e^{\frac{3}{2}} > 4$ (dividing both sides by $e^{\frac{3}{2}}$, which is positive) [you can never be sure what counts as being obvious]

$$\Leftrightarrow e^3 > 16$$
 (as the function $y = x^2$ is increasing for $x > 0$)

 $e^3 > (2 + 0.7)^3 > 2^3 + 3(2^2)(0.7) = 8 + 8.4 > 16$,

so that the original result is also true

(5*) Are the following true or false?

(i) $a < b \Rightarrow \frac{1}{a} > \frac{1}{b}$ (ii) $a < b \Rightarrow a^2 < b^2$ (iii) $a < b \& c < d \Rightarrow a + c < b + d$ (iv) $a < b \& c < d \Rightarrow a - c < b - d$

Solution

(i) Not true if a < 0 & b > 0 (consider the graph of y = 1/x)

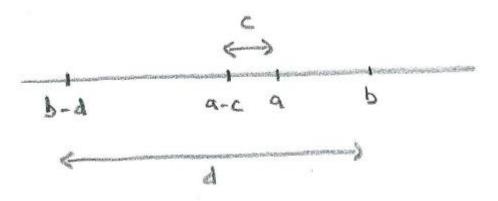
(ii) Not true if a < 0 & b < 0 or

fmng.uk

if a < 0, b > 0 & |b| < |a| (consider the graph of $y = x^2$)

(iii) True: $a < b \Rightarrow a + c < b + c < b + d$

(iv) False: For example, 8 < 9 and 2 < 4, but it is not true that 8 - 2 < 9 - 4; see diagram



(6*) Prove or provide a counter-example for the conjecture

 $x > a \& y > b \Rightarrow xy > ab$ (*a*, *b* real) in each of the following cases:

(i) *a* > 0, *b* > 0 (ii) *a* < 0, *b* < 0 (iii) *a* > 0, *b* < 0

Solution

(i)
$$x > a \Rightarrow xy > ay$$
 [as $y > 0$] > ab [since $y > b \Rightarrow ay > ab$]

so true

[or refer to graph of y = ab]

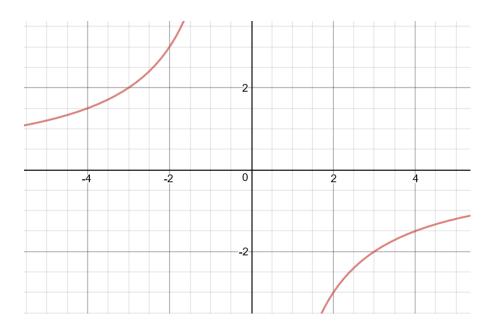
(b) *a* < 0, *b* < 0

counter-example: x = 0

(*c*) a > 0, b < 0

consider graph of xy = ab when a = 3, b = -2 (see below)

(counter-example: $x = 4 + \delta$, $y = -2 + \delta$)



(7*) Prove that a + b < 1 + ab if a > 1 and b > 1

Solution

$$\Leftrightarrow a + b - 1 - ab < 0$$
$$\Leftrightarrow a(1 - b) - (1 - b) < 0$$
$$\Leftrightarrow (a - 1)(1 - b) < 0$$

(8***) Solve the following inequality $\frac{x}{x-1} \le \frac{3}{x+2}$ ($x \ne 1, x \ne -2$)

Solution

Method 1

 $\frac{x}{x-1} \le \frac{3}{x+2}$

Multiply both sides by $(x - 1)^2 (x + 2)^2$ [as this will be positive]: $x(x - 1)(x + 2)^2 \le 3(x - 1)^2 (x + 2)$ $\Rightarrow (x - 1)(x + 2)\{x(x + 2) - 3(x - 1)\} \le 0$

fmng.uk

 $\Rightarrow (x-1)(x+2)(x^2 - x + 3) \le 0$ As $x^2 - x + 3 = \left(x - \frac{1}{2}\right)^2 - \frac{1}{4} + 3 > 0$ for all x,

the original inequality is satisfied when $-2 \le x \le 1$ [for example, by considering the graph of y = (x - 1)(x + 2)].

Method 2

$$\frac{x}{x-1} \le \frac{3}{x+2} \Rightarrow \frac{x}{x-1} - \frac{3}{x+2} \le 0$$
$$\Rightarrow \frac{x(x+2) - 3(x-1)}{(x-1)(x+2)} \le 0 \Rightarrow \frac{x^2 - x + 3}{(x-1)(x+2)} \le 0$$

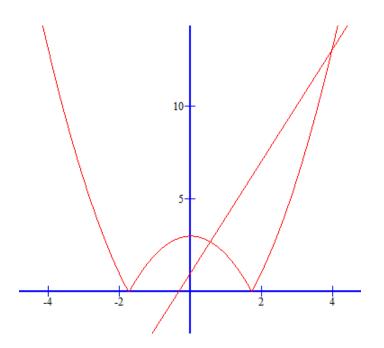
As before, $x^2 - x + 3 > 0$ for all x,

so that we require $(x - 1)(x + 2) \le 0$, and hence $-2 \le x \le 1$

(9***) Solve the following inequality

 $|x^2 - 3| > 3x + 1$

Solution



To determine the points of intersection of $y = |x^2 - 3|$ and y = 3x + 1:

$$x^{2} - 3 \ge 0$$
 and $x^{2} - 3 = 3x + 1 \Rightarrow x^{2} - 3x - 4 = 0 \Rightarrow$
 $(x - 4)(x + 1) = 0$

From the graph, we can reject the negative value of x, to give x = 4, which is consistent with $x^2 - 3 \ge 0$.

Also,
$$x^2 - 3 < 0$$
 and $-(x^2 - 3) = 3x + 1 \Rightarrow x^2 + 3x - 2 = 0$
 $\Rightarrow x = \frac{-3 \pm \sqrt{9+8}}{2}$

From the graph, we can reject the negative value of x, to give $\frac{-3+\sqrt{17}}{2}$, which is consistent with $x^2 - 3 < 0$.

So, from the graph, $|x^2 - 3| > 3x + 1$ when $x < \frac{-3 + \sqrt{17}}{2}$ or x > 4.