Inequalities (4 pages; $3 / 6 / 23$)

Contents

(A) Methods
(B) Notes
(C) Inequalities involving moduli

(A) Methods

(1) Convert into an equation, by considering the critical value where equality holds.
(2) If a and b are ≥ 0, then $a>b \Leftrightarrow a^{2}>b^{2}$ (as $y=x^{2}$ is an increasing function for $x \geq 0$).
eg $|x-1|>|x+2| \Leftrightarrow(x-1)^{2}>(x+2)^{2}$
(3) If an expression can be arranged into the form $(a-b)^{2}$, then this will be non-negative.
(4) Use of linear interpolation, to obtain lower or upper bound.
(5) Methods for solving $\frac{x+1}{x-2}<2 x$

Method 1: Multiply both sides by $(x-2)^{2}$ (as this is positive, assuming that $x \neq 2$). The resulting cubic will have a factor of $x-2$. Consider the regions of the graph.

Method 2: Treat the cases $x-2<0$ and $x-2>0$ separately Method 3: Rearrange as $\frac{x+1}{x-2}-2 x<0$, and write the LHS as a single fraction. Consider the critical points where either the numerator or the denominator is zero.

Method 4: Sketch $y=\frac{x+1}{x-2}$ and $y=2 x$, and consider the points of intersection.
(B) Notes
(1) Beware of multiplying inequalities by a quantity that is (or could be) negative (eg $\log (0.5)$).
(2) $a<b \Rightarrow \frac{1}{a}+\frac{1}{b}<\frac{1}{a-\delta}+\frac{1}{b+\delta}(\delta>0)$
(C) Inequalities involving moduli
(1) $|x-2|>5$

Method 1

x is more than 5 away from 2 , and so has to be either <-3 or >7
Method 2
$|x-2|>5 \Leftrightarrow(x-2)^{2}>25$ etc

Method 3

Case 1: $x-2 \geq 0$; Case 2: $x-2<0$
Method 4
Draw graphs of $y=|x-2|$ and $y=5$
(2) $2<|x+3|<7$

Method 1 Distance of x from -3 is between 2 and 7
So $-10<x<-5$ or $-1<x<4$
Method $22<|x+3|<7 \Leftrightarrow 4<(x+3)^{2}<49$ etc
Method 3 Case 1: $x+3 \geq 0$; Case 2: $x+3<0$
(3) $|x-2|>|x-5|$

Method $1 x$ has to be further from 2 than from 5 .
It is equidistant when $x=\frac{7}{2}$, and so $x>\frac{7}{2}$.
Method $2|x-2|>|x-5| \Leftrightarrow(x-2)^{2}>(x-5)^{2}$ etc
Method 3 Case 1: $x<2$; Case 2: $2 \leq x<5$; Case 3: $x \geq 5$
Method 4 Draw the graphs of $y=|x-2|$ and $y=|x-5|$

