Inequalities (4 pages; 3/6/23)

Contents

- (A) Methods
- (B) Notes
- (C) Inequalities involving moduli

(A) Methods

(1) Convert into an equation, by considering the critical value where equality holds.

(2) If *a* and *b* are ≥ 0 , then $a > b \Leftrightarrow a^2 > b^2$ (as $y = x^2$ is an increasing function for $x \ge 0$).

 $\operatorname{eg} |x - 1| > |x + 2| \Leftrightarrow (x - 1)^2 > (x + 2)^2$

(3) If an expression can be arranged into the form $(a - b)^2$, then this will be non-negative.

(4) Use of linear interpolation, to obtain lower or upper bound.

(5) Methods for solving $\frac{x+1}{x-2} < 2x$

Method 1: Multiply both sides by $(x - 2)^2$ (as this is positive, assuming that $x \neq 2$). The resulting cubic will have a factor of

x - 2. Consider the regions of the graph.

Method 2: Treat the cases x - 2 < 0 and x - 2 > 0 separately

Method 3: Rearrange as $\frac{x+1}{x-2} - 2x < 0$, and write the LHS as a single fraction. Consider the critical points where either the numerator or the denominator is zero.

Method 4: Sketch $y = \frac{x+1}{x-2}$ and y = 2x, and consider the points of intersection.

(B) Notes

(1) Beware of multiplying inequalities by a quantity that is (or could be) negative (eg log(0.5)).

(2)
$$a < b \Rightarrow \frac{1}{a} + \frac{1}{b} < \frac{1}{a-\delta} + \frac{1}{b+\delta} \ (\delta > 0)$$

(C) Inequalities involving moduli

(1) |x - 2| > 5

Method 1

x is more than 5 away from 2, and so has to be either < -3 or > 7

Method 2

 $|x-2| > 5 \Leftrightarrow (x-2)^2 > 25$ etc

Method 3

Case 1: $x - 2 \ge 0$; Case 2: x - 2 < 0

Method 4

Draw graphs of y = |x - 2| and y = 5

(2) 2 < |x+3| < 7

Method 1 Distance of *x* from -3 is between 2 and 7

So −10 < *x* < −5 *or* − 1 < *x* < 4

Method 2 $2 < |x + 3| < 7 \Leftrightarrow 4 < (x + 3)^2 < 49$ etc

Method 3 Case 1: $x + 3 \ge 0$; Case 2: x + 3 < 0

(3) |x - 2| > |x - 5|

Method 1 *x* has to be further from 2 than from 5.

It is equidistant when $x = \frac{7}{2}$, and so $x > \frac{7}{2}$.

Method 2 $|x-2| > |x-5| \Leftrightarrow (x-2)^2 > (x-5)^2$ etc

Method 3 Case 1: x < 2; Case 2: $2 \le x < 5$; Case 3: $x \ge 5$

Method 4 Draw the graphs of y = |x - 2| and y = |x - 5|