Induction (3 pages; 2/6/23)
See STEP: "Misc. Topic Notes" re. Strong Induction
(1) Example: $\sum_{r=1}^{n} r^{3}=\frac{1}{4} n^{2}(n+1)^{2}$

Solution

$\sum_{r=1}^{1} r^{3}=1^{3}=1$ and $\frac{1}{4}(1)^{2}(1+1)^{2}=1 ;$ thus the result is true for $n=1$
[Be careful to give enough working for both sides.]
Now assume that the result is true for $n=k$, so that
$\sum_{r=1}^{k} r^{3}=\frac{1}{4} k^{2}(k+1)^{2}$
[A common error is to write "Let $n=k$ ", or "Assume $n=k$ ", or "If $\left.n=k^{\prime \prime}\right]$
[At this point it is possible to indicate the 'target' for $n=k+1$; namely that $\left.\sum_{r=1}^{k+1} r^{3}=\frac{1}{4}(k+1)^{2}(k+2)^{2}\right]$
Then $\sum_{r=1}^{k+1} r^{3}=\frac{1}{4} k^{2}(k+1)^{2}+(k+1)^{3}$
$=\frac{1}{4}(k+1)^{2}\left(k^{2}+4(k+1)\right)$
$=\frac{1}{4}(k+1)^{2}(k+2)^{2}$
$=\frac{1}{4}(k+1)^{2}([k+1]+1)^{2}$
But this is the result with k replaced by $k+1$.
[Or, if the target has been mentioned previously, just indicate that the target has been obtained.]

So, if the result is true for $n=k$, then it is true for $n=k+1$.
[A common error is to write: "So the result is true for $n=k$ and $n=k+1$ "]

As the result is true for $n=1$, it is therefore true for $n=2,3, \ldots$ and, by [the principle of mathematical] induction, for all integer $n \geq 1$. [In some cases, it is appropriate to start at a different value for n, such as 0 or 2 . This depends on what values of n the given formula is defined for.]
[Note that no credit is ever given in an exam for the standard wording on its own, or where the algebra is 'fudged'.]
(2) Example:

If $u_{n+1}=2 u_{n}+3$, where $u_{1}=5$, then $u_{n}=2^{n+2}-3$

Solution

[Show that the result is true for $n=1$]
Now assume that the result is true for $n=k$, so that
$u_{k}=2^{k+2}-3$
Then $u_{k+1}=2 u_{k}+3=2\left(2^{k+2}-3\right)+3=2^{k+3}-3$
$=2^{(k+1)+2}-3$
[Standard wording]
(3) Example: $7^{n}+4^{n}+1$ is divisible by 6

Solution

[Show that the result is true for $n=1$]
Now assume that the result is true for $n=k$

Approach 1

so that $7^{k}+4^{k}+1=6 M$, where $M \in \mathbb{Z}^{+}$
To show that the result is then true for $n=k+1$:
$7^{k+1}+4^{k+1}+1=7\left(7^{k}+4^{k}+1\right)-3\left(4^{k}\right)-6$
$=7(6 M)-6(2)\left(4^{k-1}\right)-6$
$=6\left(7 M-2\left(4^{k-1}\right)-1\right)$, which is a multiple of 6 for $k \geq 1$
(the multiple is positive, as $7^{k+1}+4^{k+1}+1$ is positive)
[Standard wording]

Approach 2

Let $f(k)=7^{k}+4^{k}+1$
Then $f(k+1)-\lambda f(k)=\left(7^{k+1}+4^{k+1}+1\right)-\lambda\left(7^{k}+4^{k}+1\right)$ [an appropriate λ will be chosen shortly]
$=7^{k}(7-\lambda)+4^{k}(4-\lambda)+1-\lambda$
Let $\lambda=7$, so that $f(k+1)-7 f(k)=-3\left(4^{k}\right)-6$
and $f(k+1)=7 f(k)-6(2)\left(4^{k-1}\right)-6$
As $f(k)$ is assumed to be a multiple of 6 , and the other terms on the RHS are also multiples of 6 (for $k \geq 1$), it follows that $f(k+1)$ is a multiple of 6 (the multiple is positive, as $7^{k+1}+4^{k+1}+1$ is positive) .
[Standard wording]
[Textbooks sometimes consider $f(k+1)-f(k)$ (ie with $\lambda=1$), but this isn't guaranteed to work. (See Induction Exercises for examples of this.)]

