Induction - Q26 [Practice/E] (18/6/23)
$2^{4 n+1}+3$ is divisible by 5

Solution

[Show that the result is true for $n=1$]
Now assume that the result is true for $n=k$

Approach 1

so that $2^{4 k+1}+3=5 M$, where $M \in \mathbb{Z}^{+}$
To show that the result is then true for $n=k+1$:
$2^{4 k+5}+3=16(5 M-3)+3$
$=5(16 M-9)$
(the multiple is positive, as $2^{4 k+5}+3$ is positive)
[Standard wording]

Approach 2

Let $f(k)=2^{4 k+1}+3$
Then $f(k+1)-\lambda f(k)$
$=\left(2^{4 k+5}+3\right)-\lambda\left(2^{4 k+1}+3\right)$
$=2^{4 k+1}(16-\lambda)+3(1-\lambda)$
putting $\lambda=16[$ or $\lambda=1]$
$=-45$
so that $f(k+1)=16 f(k)-45$
As both terms on the RHS are multiples of 5, it follows that $f(k+1)$ is a multiple of 5 (and the multiple is positive, as
$2^{4 k+5}+3$ is positive)
[Standard wording]

