Induction - Q23 [Practice/E] (18/6/23)
$13^{n}+6^{n-1}$ is divisible by 7

Solution

[Show that the result is true for $n=1$]
Now assume that the result is true for $n=k$

Approach 1

so that $13^{k}+6^{k-1}=7 M$, where $M \in \mathbb{Z}^{+}$
To show that the result is then true for $n=k+1$:
$13^{k+1}+6^{k}=13\left(7 M-6^{k-1}\right)+6^{k}$
$=7(13 M)+6^{k-1}(6-13)$
$=7\left(13 M-6^{k-1}\right)$
(the multiple is positive, as $13^{k+1}+6^{k}$ is positive)
[Standard wording]

Approach 2

Let $f(k)=13^{k}+6^{k-1}$
Then $f(k+1)-\lambda f(k)$
$=\left(13^{k+1}+6^{k}\right)-\lambda\left(13^{k}+6^{k-1}\right)$
$=13^{k}(13-\lambda)+6^{k-1}(6-\lambda)$
putting $\lambda=13$ [or $\lambda=-1$]
$=-7\left(6^{k-1}\right)$
so that $f(k+1)=13 f(k)-7\left(6^{k-1}\right)$
As both terms on the RHS are multiples of 7, it follows that $f(k+1)$ is a multiple of 7
(the multiple is positive, as $13^{k+1}+6^{k}$ is positive)
[Standard wording]

