Induction - Q21 [Practice/E] (18/6/23)
$5^{n}+12 n-1$ is divisible by 16

Solution

[Show that the result is true for $n=1$]
Now assume that the result is true for $n=k$

Approach 1

so that $5^{k}+12 k-1=16 M$, where $M \in \mathbb{Z}^{+}$
To show that the result is then true for $n=k+1$:
$5^{k+1}+12(k+1)-1=5(16 M-12 k+1)+12 k+11$
$=16(5 M)-48 k+16$
$=16(5 M-3 k+1)$
(the multiple is positive, as $5^{k+1}+12(k+1)-1$ is positive) [Standard wording]

Approach 2

Let $f(k)=5^{k}+12 k-1$
Then $f(k+1)-\lambda f(k)$
$=5^{k+1}+12(k+1)-1-\lambda\left(5^{k}+12 k-1\right)$
$=5^{k}(5-\lambda)+12 k(1-\lambda)+11+\lambda$
Let $\lambda=5$, so that $f(k+1)=5 f(k)-48 k+16$
As all the terms on the RHS are multiples of 16 , it follows that $f(k+1)$ is a multiple of 16 .
[Standard wording]

