Induction - Q19 [Practice/E] (18/6/23)
$7^{2 n-1}+3^{2 n}$ is divisible by 8

Solution

[Show that the result is true for $n=1$]
Now assume that the result is true for $n=k$

Approach 1

so that $7^{2 k-1}+3^{2 k}=8 M$, where $M \in \mathbb{Z}^{+}$
To show that the result is then true for $n=k+1$:

$$
\begin{aligned}
& 7^{2(k+1)-1}+3^{2(k+1)}=7^{2 k+1}+3^{2 k+2} \\
& =49\left(7^{2 k-1}\right)+3^{2 k+2} \\
& =49\left(8 M-3^{2 k}\right)+3^{2 k+2} \\
& =8(49 M)+3^{2 k}(-49+9) \\
& =8\left(49 M-5\left(3^{2 k}\right)\right)
\end{aligned}
$$

(the multiple is positive, as $7^{2(k+1)-1}+3^{2(k+1)}$ is positive)
[Standard wording]

Approach 2

Note: This approach is sometimes suggested with $\lambda=1$, but there is no guarantee that it will work for this value of λ, as can be seen in subsequent examples.

Let $f(k)=7^{2 k-1}+3^{2 k}$
Then $f(k+1)-\lambda f(k)=7^{2 k+1}+3^{2 k+2}-\lambda\left(7^{2 k-1}+3^{2 k}\right)$
$=7^{2 k-1}(49-\lambda)+3^{2 k}(9-\lambda)$
Let $\lambda=1$, so that $f(k+1)=f(k)+48\left(7^{2 k-1}\right)+8\left(3^{2 k}\right)$
As $f(k)$ is assumed to be a multiple of 8 , and the other terms on the RHS are also a multiple of 8 , it follows that $f(k+1)$ is a multiple of 8. [Standard wording]

