fmng.uk

Induction – Q18 [Practice/E] (18/6/23)

If $u_{n+1} = \frac{u_n}{u_n+1}$, where $u_n = 1$, suggest a formula for u_n and prove it by induction

Solution

$$u_2 = \frac{u_1}{u_1 + 1} = \frac{1}{2}$$
, $u_3 = \frac{u_2}{u_2 + 1} = \frac{\frac{1}{2}}{\frac{1}{2} + 1} = \frac{1}{3}$, $u_4 = \frac{u_3}{u_3 + 1} = \frac{\frac{1}{3}}{\frac{1}{3} + 1} = \frac{1}{4}$

Suppose that $u_n = \frac{1}{n}$

[Show that the result is true for n = 1]

Now assume that the result is true for n = k,

so that
$$u_k = \frac{1}{k}$$

Then
$$u_{k+1} = \frac{u_k}{u_{k+1}} = \frac{\frac{1}{k}}{\frac{1}{k}+1} = \frac{1}{k+1}$$

[Standard wording]