If $u_{n+1}=\frac{u_{n}}{u_{n}+1}$, where $u_{n}=1$, suggest a formula for u_{n} and prove it by induction

Solution
$u_{2}=\frac{u_{1}}{u_{1}+1}=\frac{1}{2}, u_{3}=\frac{u_{2}}{u_{2}+1}=\frac{\frac{1}{2}}{\frac{1}{2}+1}=\frac{1}{3}, u_{4}=\frac{u_{3}}{u_{3}+1}=\frac{\frac{1}{3}}{\frac{1}{3}+1}=\frac{1}{4}$
Suppose that $u_{n}=\frac{1}{n}$
[Show that the result is true for $n=1$]
Now assume that the result is true for $n=k$, so that $u_{k}=\frac{1}{k}$

Then $u_{k+1}=\frac{u_{k}}{u_{k}+1}=\frac{\frac{1}{k}}{\frac{1}{k}+1}=\frac{1}{k+1}$
[Standard wording]

