Induction - Q15 [Practice/E] (18/6/23)

If $u_{n}=5 u_{n-1}-6 u_{n-2}$, where $u_{0}=-1 \& u_{1}=-1$, then $u_{n}=3^{n}-2^{n+1}$

Solution
[Show that the result is true for $n=1$]
[We start with $n=1$ because then the method is reliant on using the expression for u_{k+1}, where $k=1$, and this is defined (as
$\left.5 u_{k}-6 u_{k-1}=5 u_{1}-6 u_{0}\right)$, whereas the corresponding expression for $k=0\left(5 u_{0}-6 u_{-1}\right)$ is not defined.]

Now assume that the result is true for $n=k$, so that $u_{k}=3^{k}-2^{k+1}$

Then $u_{k+1}=5 u_{k}-6 u_{k-1}=5\left(3^{k}-2^{k+1}\right)-6\left(3^{k-1}-2^{k}\right)$
$=3^{k-1}(15-6)-2^{k}(10-6)$
$=3^{k+1}-2^{k+2}$
$=3^{k+1}-2^{(k+1)+1}$
[Standard wording]

