If $u_{n}=3 u_{n-1}-2 u_{n-2}$, where $u_{1}=1 \& u_{2}=3$,
then $u_{n}=2^{n}-1$

Solution

Assume that the result is true for $n=k$ and $n=k+1$, so that $u_{k}=2^{k}-1$ and $u_{k+1}=2^{k+1}-1$

Then $u_{k+2}=3 u_{k+1}-2 u_{k}=3\left(2^{k+1}-1\right)-2\left(2^{k}-1\right)$
$=2^{k+1}(3-1)-1=2^{k+2}-1$, which is the required result for $n=k+2$.

Thus if the result is true for $n=k$ and $n=k+1$, then it is true for $n=k+2$.
[Show true for $n=1 \& n=2$]
Hence it is true for $n=3,4, \ldots$ etc

