Induction – Q14 [Practice/E] (18/6/23)

If
$$u_n=3u_{n-1}-2u_{n-2}$$
 , where $u_1=1\ \&\ u_2=3$, then $u_n=2^n-1$

Solution

Assume that the result is true for n = k and n = k + 1,

so that
$$u_k = 2^k - 1$$
 and $u_{k+1} = 2^{k+1} - 1$

Then
$$u_{k+2} = 3u_{k+1} - 2u_k = 3(2^{k+1} - 1) - 2(2^k - 1)$$

$$= 2^{k+1}(3-1) - 1 = 2^{k+2} - 1$$
, which is the required result for $n = k + 2$.

Thus if the result is true for n = k and n = k + 1, then it is true for n = k + 2.

[Show true for n = 1 & n = 2]

Hence it is true for $n = 3, 4, \dots$ etc