Induction - Q1 [Practice/E] (18/6/23)

The sum of the 1 st n odd numbers is n^{2}

Solution

Result to prove: $1+3+5+\cdots+(2 n-1)=n^{2}$
[Apparently this was the first published proof by induction.]
[The 1st step is often to rewrite the LHS using the summation sign.]

Result to prove: $\sum_{r=1}^{n}(2 r-1)=n^{2}$
[Show that the result is true for $n=1$]
Now assume that the result is true for $n=k$, so that
$\sum_{r=1}^{k}(2 r-1)=k^{2}$
The target result is $\sum_{r=1}^{k+1}(2 r-1)=(k+1)^{2}$
Then $\sum_{r=1}^{k+1}(2 r-1)=k^{2}+(2[k+1]-1)$
$=k^{2}+2 k+1=(k+1)^{2}$, which is the target.
[Standard wording]

