Hyperbolic Functions: Exercises - Sol'ns (13 pages; 28/9/19)

(1) (i) Prove, using exponential functions, that

(a)
$$\cosh^2 x - \sinh^2 x = 1$$

(b) sinh2x = 2sinhxcoshx

(ii) By differentiating the result from (i)(b), obtain an expression for cosh2x in terms of $cosh^2x$ and $sinh^2x$

Solution

(i) (a) As
$$coshx = \frac{1}{2}(e^{x} + e^{-x})$$
 & $sinhx = \frac{1}{2}(e^{x} - e^{-x})$,
 $cosh^{2}x - sinh^{2}x = (coshx + sinhx)(coshx - sinhx)$
 $= e^{x} \cdot e^{-x} = 1$
(b) $2sinhxcoshx = 2(\frac{1}{2})(e^{x} - e^{-x})(\frac{1}{2})(e^{x} + e^{-x})$
 $= \frac{1}{2}(e^{2x} - e^{-2x}) = sinh2x$ (by difference of 2 squares)
(ii) Differentiating $sinh2x = 2sinhxcoshx$ gives
 $2cosh2x = 2coshxcoshx + 2sinhxsinhx$
 $\Rightarrow cosh2x = cosh^{2}x + sinh^{2}x$

(2) (a) Find the formula connecting tanh²x & sech²x?
(b) Find the formula connecting coth²x & cosech²x?
Solution

From $cosh^2 x - sinh^2 x = 1$, (a) divide by $cosh^2 x$, to give $1 - tanh^2 x = sech^2 x$

(b) divide by $sinh^2 x$, to give $coth^2 x - 1 = cosech^2 x$

(3) Show that
$$\operatorname{artanhx} = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$$
 $(|x| < 1)$

Solution

If y = artanhx, then tanhy = x (|x| < 1) $\Rightarrow x = \frac{\frac{1}{2}(e^{y} - e^{-y})}{\frac{1}{2}(e^{y} + e^{-y})} = \frac{e^{2y} - 1}{e^{2y} + 1}$ $\Rightarrow x(e^{2y} + 1) = e^{2y} - 1$ $\Rightarrow e^{2y}(x - 1) = -1 - x$ $\Rightarrow e^{2y} = \frac{1+x}{1-x}$ $\Rightarrow y = \frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)$ (|x| < 1)

(4) Differentiation
Find or prove the following:
(i) ^d/_d tanhx

(i)
$$\frac{d}{dx} \ tankx$$

(ii) $\frac{d}{dx} \ arcoshx = \frac{1}{\sqrt{x^2 - 1}}$
(iii) $\frac{d}{dx} \ artanhx = \frac{1}{1 - x^2}$
(iv) $\frac{d}{dx} \ sechx$

Solutions

(i) $\frac{d}{dx} \tanh x = \frac{d}{dx} \frac{\sinh x}{\cosh x} = \frac{\cosh x \cosh x - \sinh x \sinh x}{\cosh^2 x}$ = $\frac{1}{\cosh^2 x} = \operatorname{sech}^2 x$

(ii) Let
$$y = arcoshx$$
, so that $coshy = x$

Then
$$\frac{dx}{dy} = sinhy$$
 and $\frac{dy}{dx} = \frac{1}{\sqrt{cosh^2y - 1}} = \frac{1}{\sqrt{x^2 - 1}}$

(iii) Let
$$y = artanhx$$
, so that $tanhy = x$
and $\frac{dx}{dy} = sech^2 y = 1 - tanh^2 y = 1 - x^2$
Hence $\frac{d}{dx} artanhx = \frac{1}{1-x^2}$

(iv)
$$\frac{d}{dx} \operatorname{sechx} = \frac{d}{dx} (\operatorname{coshx})^{-1} = (-1)(\operatorname{coshx})^{-2} \operatorname{sinhx}$$

= $-\operatorname{sech}^2 x. \operatorname{sinhx}$ or $-\operatorname{sechx}. \operatorname{tanhx}$
[Although this is similar to $\frac{d}{dx} \operatorname{secx} = \operatorname{secx}. \operatorname{tanx}$, Osborn's rule doesn't apply to derivatives (and, in any case, there is no $\operatorname{sinh}^2 x$ or similar term).]

(5) Simplify $\sinh(\cosh^{-1}2)$

Solution

Let $cosh^{-1}2 = a(> 0)$, so that 2 = coshaThen $sinha = +\sqrt{cosh^2a - 1}$ [as a > 0] $= \sqrt{3}$

(6) Solve the equation 5cosh2x + 3sinhx = 6, giving your answers in exact logarithmic form **Solution**

 $5cosh2x + 3sinhx = 6 \Rightarrow 5(cosh^{2}x + sinh^{2}x) + 3sinhx - 6 = 0$ $\Rightarrow 5(1 + 2sinh^{2}x) + 3sinhx - 6 = 0$

$$\Rightarrow 10sinh^{2}x + 3sinhx - 1 = 0$$

$$\Rightarrow (5sinhx - 1)(2sinhx + 1) = 0$$

$$\Rightarrow sinhx = \frac{1}{5} \text{ or } -\frac{1}{2}$$

$$\Rightarrow x = arsinh(\frac{1}{5}) \text{ or } arsinh(-\frac{1}{2})$$

$$\Rightarrow x = \ln(\frac{1}{5} + \sqrt{\frac{1}{25} + 1}) \text{ or } \ln(-\frac{1}{2} + \sqrt{\frac{1}{4} + 1})$$

or $\ln(\frac{1}{5}(1 + \sqrt{26})) \text{ or } \ln(\frac{1}{2}(\sqrt{5} - 1))$

[It is possible to substitute these values into the equation, as a check.]

(7) Show that
$$arcoshx = \ln(x + \sqrt{x^2 - 1})$$

Solution
If $y = arcoshx$, then $coshy = x$
 $\Rightarrow x = \frac{1}{2} (e^y + e^{-y})$

$$\Rightarrow 2xe^{y} = e^{2y} + 1$$

$$\Rightarrow e^{2y} - 2xe^{y} + 1 = 0$$

$$\Rightarrow e^{y} = \frac{2x \pm \sqrt{4x^{2} - 4}}{2} = x \pm \sqrt{x^{2} - 1}$$

$$\Rightarrow y = ln(x \pm \sqrt{x^{2} - 1})$$

However, in order for y = arcoshx to be a function, the negative branch is suppressed (by restricting the domain of coshx to non-negative values). And we can show that $ln(x - \sqrt{x^2 - 1}) < 0$:

Method 1

Equivalently, we need to show that $x - \sqrt{x^2 - 1} < 1$; or that

$$x - 1 < \sqrt{x^2 - 1}$$

But $x - 1 = \sqrt{(x - 1)(x - 1)}$ (noting that the range of *coshx*, and hence the domain of *arcoshx*, excludes x < 1)

and
$$\sqrt{(x-1)(x-1)} < \sqrt{(x-1)(x+1)} = \sqrt{x^2 - 1}$$
, as required

 $(y = \sqrt{x} \text{ is an increasing function,}$

so $x-1 < x+1 \Rightarrow \sqrt{x-1} < \sqrt{x+1}$)

[Alternatively, we can argue (slightly informally) that the difference between x^2 and $x^2 - 1$ (ie 1) is contracted by applying the square root function, so that $\sqrt{x^2} - \sqrt{x^2 - 1} < 1$]

Method 2

We expect the unrestricted y = arcoshx to be symmetric about the *x*-axis (as y = coshx is symmetric about the *y*-axis). So we could show that $y = ln(x \pm \sqrt{x^2 - 1})$ can also be written as

 $y = \pm ln(x + \sqrt{x^2 - 1})$, and then reject the negative branch as before.

So we want to show that $ln(x - \sqrt{x^2 - 1}) = -ln(x + \sqrt{x^2 - 1})$:

RHS =
$$ln\left(\frac{1}{x+\sqrt{x^2-1}}\right) = ln\left(\frac{x-\sqrt{x^2-1}}{x^2-(x^2-1)}\right) = ln(x-\sqrt{x^2-1})$$
, as required

(8) If x = sinhu, write sinh(4u) in terms of x

Solution

$$sinh(4u) = 2 sinh(2u) cosh(2u)$$
$$= 4 sinhucoshu(cosh^2u + sinh^2u)$$
$$= 4x\sqrt{1 + x^2}(1 + 2x^2)$$

(9) Derive an expression for *arsinh(a)* in the form *lnb*

Solution

Let x = arsinh(a), so that sinhx = aand $\frac{1}{2}(e^x - e^{-x}) = a$ Then $\frac{1}{2}(e^{2x} - 1) = ae^x$ and $e^{2x} - 2ae^x - 1 = 0$, so that $e^x = \frac{2a \pm \sqrt{4a^2 + 4}}{2} = a + \sqrt{a^2 + 1}$ (rejecting the negative root) Thus $arsinh(a) = \ln(a + \sqrt{a^2 + 1})$ (noting that $a + \sqrt{a^2 + 1} > 0$)

Note that $\operatorname{arsinh}\left(\frac{x}{a}\right) = \ln\left(\frac{x}{a} + \sqrt{\left(\frac{x}{a}\right)^2 + 1}\right)$ $= \ln\left(\frac{x + \sqrt{x^2 + a^2}}{a}\right) = \ln(x + \sqrt{x^2 + a^2}) - \ln a$ In the formulae booklets, $\int \frac{1}{\sqrt{a^2 + x^2}} dx$ is often given as " $\operatorname{arsinh}\left(\frac{x}{a}\right)$ or $\ln(x + \sqrt{x^2 + a^2})$ " but, as we've just seen, these two expressions differ by a constant

(10) Given that $artanhx = \frac{1}{2}ln\left(\frac{1+x}{1-x}\right)$ and $arcothx = \frac{1}{2}ln\left(\frac{1+x}{x-1}\right)$, and also that $\frac{d}{dx}(artanhx) = \frac{d}{dx}(arcothx) = \frac{1}{1-x^2}$, what is wrong with the following reasoning? $\int \frac{1}{1-x^2} dx = artanhx + C = arcothx + C_1$, so that $artanhx - arcothx = C_2$

But
$$artanhx - arcothx = \frac{1}{2}ln\left(\frac{\left(\frac{1+x}{1-x}\right)}{\left(\frac{1+x}{x-1}\right)}\right) = \frac{1}{2}ln\left(\frac{x-1}{1-x}\right) = \frac{1}{2}ln(-1),$$
 which isn't defined!

Solution

The problem is that the domains of y = artanhx and

y = arcothx don't overlap (see graphs below). We ought to say that $artanhx = \frac{1}{2}ln\left(\frac{1+x}{1-x}\right)$ for |x| < 1 and $arcothx = \frac{1}{2}ln\left(\frac{1+x}{x-1}\right)$ for |x| > 1. So it doesn't make sense to determine

artanhx - arcothx

Note that, with |x| < 1, $\frac{d}{dx}(artanhx) = \frac{1}{1-x^2} > 0$ for all x; whilst with |x| > 1, $\frac{d}{dx}(arcothx) = \frac{1}{1-x^2} < 0$ for all x

(11) Given that sinhx = tany, where $-\frac{\pi}{2} < y < \frac{\pi}{2}$, show that

(a)
$$tanhx = siny$$
 (b) $x = ln(tany + secy)$

Solution

(a) As sinhx = tany, we can construct a right-angled triangle (see diagram below), where the hypotenuse is coshx, as $sinh^2x + 1 = cosh^2x$.

Then $siny = \frac{sinhx}{coshx} = tanhx$, as required.

Alternatively: $tanhx = \frac{sinhx}{coshx} = \frac{tany}{\sqrt{1+sinh^2x}}$

(from $sinh^2x + 1 = cosh^2x$, noting that coshx is always positive, so that we take the positive square root)

$$=\frac{tany}{\sqrt{1+tan^2y}}=\frac{tany}{\sqrt{sec^2y}}=\frac{tany}{secy}$$

(as cosy > 0 when $-\frac{\pi}{2} < y < \frac{\pi}{2}$, and hence secy > 0 also)

(b) From the right-angled triangle, tany + secy = sinhx + coshx $= \frac{1}{2}(e^{x} - e^{-x}) + \frac{1}{2}(e^{x} + e^{-x}) = e^{x}$, so that $\ln(tany + secy) = x$, as required.

Alternatively: $sinhx = tany \Rightarrow \frac{1}{2}(e^{x} - e^{-x}) = tany$ $\Rightarrow e^{2x} - 1 = 2tanye^{x}$ $\Rightarrow e^{2x} - 2tanye^{x} - 1 = 0$ $\Rightarrow e^{x} = \frac{2tany \pm \sqrt{4tan^{2}y + 4}}{2} = tany \pm secy$

$$tany - secy = \frac{siny-1}{cosy} < 0 \text{ when } -\frac{\pi}{2} < y < \frac{\pi}{2}$$

Hence, as $e^x > 0$, it follows that $e^x = tany + secy$,
and hence $x = \ln(tany + secy)$

(12) What is the domain of $artanh\left(\frac{x}{2}\right)$?

Solution

$$tanhx = \frac{sinhx}{coshx} = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1} = \frac{e^{2x} + 1}{e^{2x} + 1} - \frac{2}{e^{2x} + 1} = 1 - \frac{2}{e^{2x} + 1}$$

Thus $-1 < tanhx < 1 \text{ (as } x \to -\infty \& \infty)$

As *artanhx* is the inverse of *tanhx*, the domain of *artanhx* is the range of *tanhx*; ie (-1, 1).

Thus the domain of $artanh\left(\frac{x}{2}\right)$ satisfies $-1 < \frac{x}{2} < 1$; ie -2 < x < 2

(13) Show that $\operatorname{arcoth} x = \frac{1}{2} \ln \left(\frac{1+x}{x-1} \right) \quad (|x| > 1)$

Solution

If y = arcothx, then cothy = x (|x| > 1)

$$\Rightarrow x = \frac{\frac{1}{2}(e^{y} + e^{-y})}{\frac{1}{2}(e^{y} - e^{-y})} = \frac{e^{2y} + 1}{e^{2y} - 1}$$
$$\Rightarrow x(e^{2y} - 1) = e^{2y} + 1$$
$$\Rightarrow e^{2y}(x - 1) = 1 + x$$
$$\Rightarrow e^{2y} = \frac{1 + x}{x - 1}$$
$$\Rightarrow y = \frac{1}{2}\ln\left(\frac{1 + x}{x - 1}\right) \quad (|x| > 1)$$

Alternative Method

If $artanhx = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$ (|x| < 1) has been established: If y = arcothx, then cothy = x $\Rightarrow tanhy = \frac{1}{x}$,

and hence
$$y = \operatorname{artanh}\left(\frac{1}{x}\right) = \frac{1}{2}\ln\left(\frac{1+\frac{1}{x}}{1-\frac{1}{x}}\right) = \frac{1}{2}\ln\left(\frac{x+1}{x-1}\right)$$

(14) (i) Use $artanhx = \frac{1}{2} \ln\left(\frac{1+x}{1-x}\right)$ to show that $\frac{d}{dx}artanhx = \frac{1}{1-x^2}$ (ii) Use $arcothx = \frac{1}{2} \ln\left(\frac{1+x}{x-1}\right)$ to show that $\frac{d}{dx}arcothx = \frac{1}{1-x^2}$ also Solution

(i)
$$\frac{d}{dx} \operatorname{artanhx} = \frac{1}{2} \cdot \frac{1-x}{1+x} \cdot \frac{(1-x)-(1+x)(-1)}{(1-x)^2}$$

= $\frac{1}{2} \cdot \frac{2}{(1+x)(1-x)} = \frac{1}{1-x^2}$

(ii)
$$\frac{d}{dx}arcothx = \frac{1}{2} \cdot \frac{x-1}{1+x} \cdot \frac{(x-1)-(1+x)}{(x-1)^2}$$

$$=\frac{1}{2} \cdot \frac{-2}{(1+x)(x-1)} = \frac{1}{1-x^2}$$

(15)(i) Show that $arcothx = artanh\left(\frac{1}{x}\right)$ (ii) Find f(x) such that arcoshx = arsinh(f(x))

Solution

(i) Let
$$y = arcothx$$
, so that $cothy = x$
 $\Rightarrow tanhy = \frac{1}{x}$
 $\Rightarrow y = artanh(\frac{1}{x})$

(ii) Let
$$y = arcoshx$$
, so that $coshy = x$
 $\Rightarrow sinhy = \sqrt{x^2 - 1}$
 $\Rightarrow y = arsinh(\sqrt{x^2 - 1})$; ie $f(x) = \sqrt{x^2 - 1}$

(16) Given that $\int \frac{1}{\sqrt{x^2 - a^2}} dx = \operatorname{arcosh}(\frac{x}{a})$, and that $\operatorname{arcoshx} = \ln(x + \sqrt{x^2 - 1})$, justify the writing of the integral as $\ln(x + \sqrt{x^2 - a^2})$

Solution

$$arcosh\left(\frac{x}{a}\right) = ln\left(\frac{x}{a} + \sqrt{\frac{x^2}{a^2} - 1}\right) = \ln\left(\frac{x + \sqrt{x^2 - a^2}}{a}\right)$$
$$= \ln\left(x + \sqrt{x^2 - a^2}\right) - lna \text{, which only differs from}$$
$$\ln\left(x + \sqrt{x^2 - a^2}\right) \text{ by a constant}$$

(17) Given that $arcoshx = ln(x + \sqrt{x^2 - 1})$, show that if cosha = b then $a = ln(b \pm \sqrt{b^2 - 1})$ Solution $cosha = b \Rightarrow a = \pm arcoshb = \pm ln(b + \sqrt{b^2 - 1})$ And $-ln(b + \sqrt{b^2 - 1}) = ln(\frac{1}{b + \sqrt{b^2 - 1}}) = ln(\frac{b - \sqrt{b^2 - 1}}{b^2 - (b^2 - 1)})$ $= ln(b - \sqrt{b^2 - 1})$ so that $\pm ln(b + \sqrt{b^2 - 1}) = ln(b \pm \sqrt{b^2 - 1})$

(i)

fmng.uk

(iii)

