Hyperbolic Functions: Exercises - Sol'ns (13 pages; 8/1/20)

- (1*) (i) Prove, using exponential functions, that
- (a) $cosh^2x sinh^2x = 1$
- (b) sinh2x = 2sinhxcoshx
- (ii) By differentiating the result from (i)(b), obtain an expression for cosh2x in terms of $cosh^2x$ and $sinh^2x$

Solution

(i)(a) As
$$coshx = \frac{1}{2}(e^x + e^{-x}) \& sinhx = \frac{1}{2}(e^x - e^{-x}),$$

 $cosh^2x - sinh^2x = (coshx + sinhx)(coshx - sinhx)$
 $= e^x \cdot e^{-x} = 1$

(b)
$$2sinhxcoshx = 2(\frac{1}{2})(e^x - e^{-x})(\frac{1}{2})(e^x + e^{-x})$$

= $\frac{1}{2}(e^{2x} - e^{-2x}) = sinh2x$ (by difference of 2 squares)

(ii) Differentiating sinh2x = 2sinhxcoshx gives 2cosh2x = 2coshxcoshx + 2sinhxsinhx $\Rightarrow cosh2x = cosh^2x + sinh^2x$

- (2*) (a) Find the formula connecting $tanh^2x \& sech^2x$?
- (b) Find the formula connecting $coth^2x$ & $cosech^2x$?

Solution

From $cosh^2x - sinh^2x = 1$,

- (a) divide by $cosh^2x$, to give $1 tanh^2x = sech^2x$
- (b) divide by $sinh^2 x$, to give $coth^2 x 1 = cosech^2 x$

(3***) Show that
$$artanhx = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$$
 (|x| < 1)

Solution

If y = artanhx, then tanhy = x (|x| < 1)

$$\Rightarrow \chi = \frac{\frac{1}{2}(e^{y} - e^{-y})}{\frac{1}{2}(e^{y} + e^{-y})} = \frac{e^{2y} - 1}{e^{2y} + 1}$$

$$\Rightarrow x(e^{2y} + 1) = e^{2y} - 1$$

$$\Rightarrow e^{2y}(x-1) = -1 - x$$

$$\Rightarrow e^{2y} = \frac{1+x}{1-x}$$

$$\Rightarrow y = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right) \ (|x| < 1)$$

(4**) Differentiation

Find or prove the following:

(i)
$$\frac{d}{dx}$$
 tanhx

(ii)
$$\frac{d}{dx} arcoshx = \frac{1}{\sqrt{x^2-1}}$$

(iii)
$$\frac{d}{dx}$$
 artanh $x = \frac{1}{1-x^2}$

(iv)
$$\frac{d}{dx}$$
 sechx

(i)
$$\frac{d}{dx} \tanh x = \frac{d}{dx} \frac{\sinh x}{\cosh x} = \frac{\cosh x \cdot \cosh x - \sinh x \cdot \sinh x}{\cosh^2 x}$$

= $\frac{1}{\cosh^2 x} = \operatorname{sech}^2 x$

(ii) Let
$$y = arcoshx$$
, so that $coshy = x$

Then
$$\frac{dx}{dy} = sinhy$$
 and $\frac{dy}{dx} = \frac{1}{\sqrt{cosh^2y - 1}} = \frac{1}{\sqrt{x^2 - 1}}$

(iii) Let
$$y = artanhx$$
, so that $tanhy = x$ and $\frac{dx}{dy} = sech^2y = 1 - tanh^2y = 1 - x^2$ Hence $\frac{d}{dx}$ $artanhx = \frac{1}{1-x^2}$

(iv)
$$\frac{d}{dx} \operatorname{sech} x = \frac{d}{dx} (\cosh x)^{-1} = (-1)(\cosh x)^{-2} \sinh x$$

= $-\operatorname{sech}^2 x \cdot \sinh x$ or $-\operatorname{sech} x \cdot \tanh x$

[Although this is similar to $\frac{d}{dx}secx = secx.tanx$, Osborn's rule doesn't apply to derivatives (and, in any case, there is no $sinh^2x$ or similar term).]

 (5^*) Simplify $sinh(cosh^{-1}2)$

Solution

Let
$$cosh^{-1}2 = a(> 0)$$
, so that $2 = cosha$
Then $sinha = +\sqrt{cosh^2a - 1}$ [as a > 0] = $\sqrt{3}$

(6**) Solve the equation 5cosh2x + 3sinhx = 6, giving your answers in exact logarithmic form

$$5cosh2x + 3sinhx = 6 \Rightarrow 5(cosh^2x + sinh^2x) + 3sinhx - 6 = 0$$
$$\Rightarrow 5(1 + 2sinh^2x) + 3sinhx - 6 = 0$$

$$\Rightarrow 10sinh^2x + 3sinhx - 1 = 0$$

$$\Rightarrow (5sinhx - 1)(2sinhx + 1) = 0$$

$$\Rightarrow sinhx = \frac{1}{5} \text{ or } -\frac{1}{2}$$

$$\Rightarrow x = arsinh(\frac{1}{5}) \text{ or } arsinh(-\frac{1}{2})$$

$$\Rightarrow x = \ln(\frac{1}{5} + \sqrt{\frac{1}{25} + 1}) \text{ or } \ln(-\frac{1}{2} + \sqrt{\frac{1}{4} + 1})$$

or
$$\ln(\frac{1}{5}(1+\sqrt{26}))$$
 or $\ln(\frac{1}{2}(\sqrt{5}-1))$

[It is possible to substitute these values into the equation, as a check.]

$$(7^{***})$$
 Show that $arcoshx = ln(x + \sqrt{x^2 - 1})$

Solution

If y = arcoshx, then coshy = x

$$\Rightarrow x = \frac{1}{2} (e^y + e^{-y})$$

$$\Rightarrow 2xe^y = e^{2y} + 1$$

$$\Rightarrow e^{2y} - 2xe^y + 1 = 0$$

$$\Rightarrow e^{y} = \frac{2x \pm \sqrt{4x^2 - 4}}{2} = x \pm \sqrt{x^2 - 1}$$

$$\Rightarrow y = ln(x \pm \sqrt{x^2 - 1})$$

However, in order for y = arcoshx to be a function, the negative branch is suppressed (by restricting the domain of coshx to nonnegative values). And we can show that $ln(x - \sqrt{x^2 - 1}) < 0$:

Method 1

Equivalently, we need to show that $x - \sqrt{x^2 - 1} < 1$; or that

$$x-1 < \sqrt{x^2-1}$$

But $x - 1 = \sqrt{(x - 1)(x - 1)}$ (noting that the range of coshx, and hence the domain of arcoshx, excludes x < 1)

and
$$\sqrt{(x-1)(x-1)} < \sqrt{(x-1)(x+1)} = \sqrt{x^2-1}$$
 , as required $(y=\sqrt{x} \text{ is an increasing function,}$

so
$$x - 1 < x + 1 \Rightarrow \sqrt{x - 1} < \sqrt{x + 1}$$
)

[Alternatively, we can argue (slightly informally) that the difference between x^2 and x^2-1 (ie 1) is contracted by applying the square root function, so that $\sqrt{x^2}-\sqrt{x^2-1}<1$]

Method 2

We expect the unrestricted y = arcoshx to be symmetric about the x-axis (as y = coshx is symmetric about the y-axis). So we could show that $y = ln(x \pm \sqrt{x^2 - 1})$ can also be written as

 $y = \pm ln(x + \sqrt{x^2 - 1})$, and then reject the negative branch as before.

So we want to show that $ln(x - \sqrt{x^2 - 1}) = -ln(x + \sqrt{x^2 - 1})$:

RHS =
$$ln\left(\frac{1}{x+\sqrt{x^2-1}}\right) = ln\left(\frac{x-\sqrt{x^2-1}}{x^2-(x^2-1)}\right) = ln(x-\sqrt{x^2-1})$$
, as required

(8*) If x = sinhu, write sinh(4u) in terms of x

Solution

$$sinh(4u) = 2 sinh(2u) cosh(2u)$$

 $= 4sinhucoshu(cosh^2u + sinh^2u)$

$$=4x\sqrt{1+x^2}(1+2x^2)$$

 (9^{***}) Derive an expression for arsinh(a) in the form lnb

Solution

Let x = arsinh(a), so that sinhx = a

and
$$\frac{1}{2}(e^x - e^{-x}) = a$$

Then
$$\frac{1}{2}(e^{2x} - 1) = ae^x$$

and
$$e^{2x} - 2ae^x - 1 = 0$$
,

so that $e^x = \frac{2a \pm \sqrt{4a^2 + 4}}{2} = a + \sqrt{a^2 + 1}$ (rejecting the negative root)

Thus $arsinh(a) = \ln(a + \sqrt{a^2 + 1})$

(noting that $a + \sqrt{a^2 + 1} > 0$)

Note that
$$arsinh\left(\frac{x}{a}\right) = \ln\left(\frac{x}{a} + \sqrt{\left(\frac{x}{a}\right)^2 + 1}\right)$$

$$= \ln\left(\frac{x + \sqrt{x^2 + a^2}}{a}\right) = \ln\left(x + \sqrt{x^2 + a^2}\right) - \ln a$$

In the formulae booklets, $\int \frac{1}{\sqrt{a^2+x^2}} dx$ is often given as

" $arsinh\left(\frac{x}{a}\right)$ or $\ln\left(x+\sqrt{x^2+a^2}\right)$ " but, as we've just seen, these two expressions differ by a constant

(10*) Given that
$$artanhx = \frac{1}{2}ln\left(\frac{1+x}{1-x}\right)$$
 and $arcothx = \frac{1}{2}ln\left(\frac{1+x}{x-1}\right)$, and also that $\frac{d}{dx}(artanhx) = \frac{d}{dx}(arcothx) = \frac{1}{1-x^2}$,

what is wrong with the following reasoning?

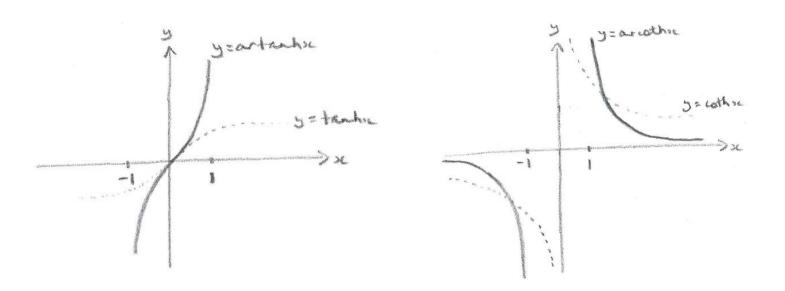
$$\int \frac{1}{1-x^2} dx = \operatorname{artanh} x + C = \operatorname{arcoth} x + C_1,$$

so that $artanhx - arcothx = C_2$

But
$$artanhx - arcothx = \frac{1}{2} ln \left(\frac{\left(\frac{1+x}{1-x} \right)}{\left(\frac{1+x}{x-1} \right)} \right) = \frac{1}{2} ln \left(\frac{x-1}{1-x} \right) = \frac{1}{2} ln (-1),$$
 which isn't defined!

Solution

The problem is that the domains of y = artanhx and y = arcothx don't overlap (see graphs below). We ought to say that $artanhx = \frac{1}{2} ln\left(\frac{1+x}{1-x}\right)$ for |x| < 1 and $arcothx = \frac{1}{2} ln\left(\frac{1+x}{x-1}\right)$ for |x| > 1. So it doesn't make sense to determine artanhx - arcothx



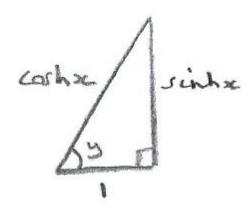
Note that, with |x| < 1, $\frac{d}{dx}(artanhx) = \frac{1}{1-x^2} > 0$ for all x; whilst with |x| > 1, $\frac{d}{dx}(arcothx) = \frac{1}{1-x^2} < 0$ for all x

(11***) Given that sinhx = tany, where $-\frac{\pi}{2} < y < \frac{\pi}{2}$, show that

(a)
$$tanhx = siny$$
 (b) $x = ln(tany + secy)$

Solution

(a) As sinhx = tany, we can construct a right-angled triangle (see diagram below), where the hypotenuse is coshx, as $sinh^2x + 1 = cosh^2x$.



Then $siny = \frac{sinhx}{coshx} = tanhx$, as required.

Alternatively:
$$tanhx = \frac{sinhx}{coshx} = \frac{tany}{\sqrt{1+sinh^2x}}$$

(from $sinh^2x + 1 = cosh^2x$, noting that coshx is always positive, so that we take the positive square root)

$$=\frac{tany}{\sqrt{1+tan^2y}}=\frac{tany}{\sqrt{sec^2y}}=\frac{tany}{secy}$$

(as cosy > 0 when $-\frac{\pi}{2} < y < \frac{\pi}{2}$, and hence secy > 0 also) = tanycosy = siny

(b) From the right-angled triangle,

$$tany + secy = sinhx + coshx$$

$$= \frac{1}{2}(e^x - e^{-x}) + \frac{1}{2}(e^x + e^{-x}) = e^x,$$

so that ln(tany + secy) = x, as required.

Alternatively:
$$sinhx = tany \Rightarrow \frac{1}{2}(e^x - e^{-x}) = tany$$

$$\Rightarrow e^{2x} - 1 = 2tanye^x$$

$$\Rightarrow e^{2x} - 2tanye^x - 1 = 0$$

$$\Rightarrow e^x = \frac{2tany \pm \sqrt{4tan^2y + 4}}{2} = tany \pm secy$$

$$tany - secy = \frac{siny-1}{cosy} < 0$$
 when $-\frac{\pi}{2} < y < \frac{\pi}{2}$

Hence, as $e^x > 0$, it follows that $e^x = tany + secy$, and hence $x = \ln(tany + secy)$

(12***) What is the domain of $artanh\left(\frac{x}{2}\right)$?

Solution

$$tanhx = \frac{sinhx}{coshx} = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1} = \frac{e^{2x} + 1}{e^{2x} + 1} - \frac{2}{e^{2x} + 1} = 1 - \frac{2}{e^{2x} + 1}$$

Thus
$$-1 < tanhx < 1$$
 (as $x \to -\infty \& \infty$)

As artanhx is the inverse of tanhx, the domain of artanhx is the range of tanhx; ie (-1,1).

Thus the domain of $artanh\left(\frac{x}{2}\right)$ satisfies $-1 < \frac{x}{2} < 1$;

ie
$$-2 < x < 2$$

(13***) Show that
$$\operatorname{arcoth} x = \frac{1}{2} \ln \left(\frac{1+x}{x-1} \right)$$
 $(|x| > 1)$

If
$$y = arcothx$$
, then $cothy = x \quad (|x| > 1)$

$$\Rightarrow x = \frac{\frac{1}{2}(e^{y} + e^{-y})}{\frac{1}{2}(e^{y} - e^{-y})} = \frac{e^{2y} + 1}{e^{2y} - 1}$$

$$\Rightarrow x(e^{2y} - 1) = e^{2y} + 1$$

$$\Rightarrow e^{2y}(x - 1) = 1 + x$$

$$\Rightarrow e^{2y} = \frac{1 + x}{x - 1}$$

$$\Rightarrow y = \frac{1}{2}\ln\left(\frac{1 + x}{x - 1}\right) \quad (|x| > 1)$$

Alternative Method

If $artanhx = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$ (|x| < 1) has been established:

If y = arcothx, then cothy = x

$$\Rightarrow tanhy = \frac{1}{x}$$
,

and hence
$$y = \operatorname{artanh}\left(\frac{1}{x}\right) = \frac{1}{2} \ln\left(\frac{1+\frac{1}{x}}{1-\frac{1}{x}}\right) = \frac{1}{2} \ln\left(\frac{x+1}{x-1}\right)$$

 (14^{***}) (i) Use $artanhx = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$ to show that $\frac{d}{dx} artanhx = \frac{1}{1-x^2}$

(ii) Use
$$arcothx = \frac{1}{2} \ln \left(\frac{1+x}{x-1} \right)$$
 to show that $\frac{d}{dx} arcothx = \frac{1}{1-x^2}$ also

(i)
$$\frac{d}{dx} \operatorname{artanh} x = \frac{1}{2} \cdot \frac{1-x}{1+x} \cdot \frac{(1-x)-(1+x)(-1)}{(1-x)^2}$$

= $\frac{1}{2} \cdot \frac{2}{(1+x)(1-x)} = \frac{1}{1-x^2}$

(ii)
$$\frac{d}{dx} \operatorname{arcoth} x = \frac{1}{2} \cdot \frac{x-1}{1+x} \cdot \frac{(x-1)-(1+x)}{(x-1)^2}$$

$$=\frac{1}{2}\cdot\frac{-2}{(1+x)(x-1)}=\frac{1}{1-x^2}$$

 $(15^{***})(i)$ Show that $arcothx = artanh\left(\frac{1}{x}\right)$

(ii) Find f(x) such that arcoshx = arsinh(f(x))

Solution

- (i) Let y = arcothx, so that cothy = x
- $\Rightarrow tanhy = \frac{1}{x}$
- $\Rightarrow y = artanh\left(\frac{1}{x}\right)$
- (ii) Let y = arcoshx, so that coshy = x
- $\Rightarrow sinhy = \sqrt{x^2 1}$
- $\Rightarrow y = arsinh(\sqrt{x^2 1})$; ie $f(x) = \sqrt{x^2 1}$

(16*) Given that $\int \frac{1}{\sqrt{x^2-a^2}} dx = arcosh(\frac{x}{a})$, and that

 $arcoshx = ln(x + \sqrt{x^2 - 1})$, justify the writing of the integral as $ln(x + \sqrt{x^2 - a^2})$

Solution

$$arcosh\left(\frac{x}{a}\right) = ln\left(\frac{x}{a} + \sqrt{\frac{x^2}{a^2} - 1}\right) = ln\left(\frac{x + \sqrt{x^2 - a^2}}{a}\right)$$

 $= \ln(x + \sqrt{x^2 - a^2}) - \ln a$, which only differs from

$$\ln(x + \sqrt{x^2 - a^2})$$
 by a constant

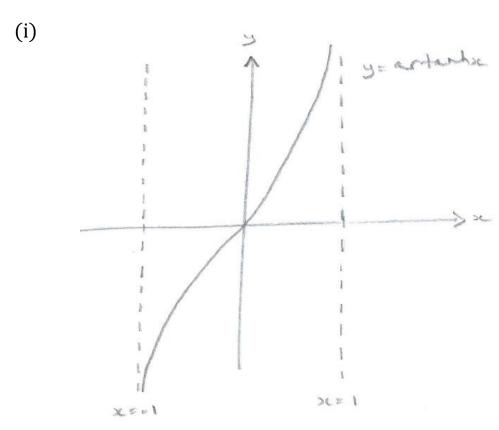
(17***) Given that $arcoshx = ln(x + \sqrt{x^2 - 1})$, show that if cosha = b then $a = ln(b \pm \sqrt{b^2 - 1})$

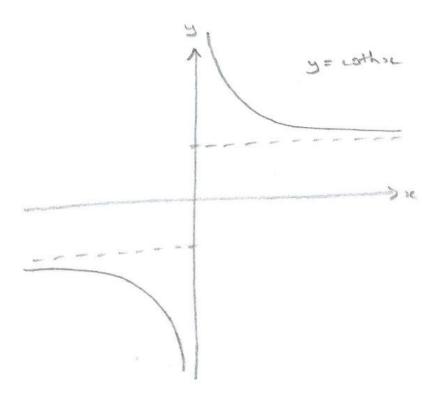
Solution

$$cosha = b \Rightarrow a = \pm arcoshb = \pm ln(b + \sqrt{b^2 - 1})$$
And $-ln(b + \sqrt{b^2 - 1}) = ln(\frac{1}{b + \sqrt{b^2 - 1}}) = ln(\frac{b - \sqrt{b^2 - 1}}{b^2 - (b^2 - 1)})$
 $= ln(b - \sqrt{b^2 - 1})$
so that $\pm ln(b + \sqrt{b^2 - 1}) = ln(b \pm \sqrt{b^2 - 1})$

(18*) Sketch the following:

(i)
$$y = artanhx$$
 (ii) $y = cothx$ (iii) $y = arcothx$





(iii)

