Hyperbolic Functions – Q9 [Practice/H] (17/6/23)

Show that $arcoshx = \ln(x + \sqrt{x^2 - 1})$

Solution

If
$$y = arcoshx$$
, then $coshy = x$

$$\Rightarrow x = \frac{1}{2} (e^{y} + e^{-y})$$

$$\Rightarrow 2xe^{y} = e^{2y} + 1$$

$$\Rightarrow e^{2y} - 2xe^{y} + 1 = 0$$

$$\Rightarrow e^{y} = \frac{2x \pm \sqrt{4x^{2} - 4}}{2} = x \pm \sqrt{x^{2} - 1}$$

$$\Rightarrow y = ln(x \pm \sqrt{x^{2} - 1})$$

However, in order for y = arcoshx to be a function, the negative branch is suppressed (by restricting the domain of coshx to non-negative values). And we can show that $ln(x - \sqrt{x^2 - 1}) < 0$:

Method 1

Equivalently, we need to show that $x - \sqrt{x^2 - 1} < 1$; or that $x - 1 < \sqrt{x^2 - 1}$

But $x - 1 = \sqrt{(x - 1)(x - 1)}$ (noting that the range of *coshx*, and hence the domain of *arcoshx*, excludes x < 1)

and $\sqrt{(x-1)(x-1)} < \sqrt{(x-1)(x+1)} = \sqrt{x^2 - 1}$, as required ($y = \sqrt{x}$ is an increasing function,

so $x-1 < x+1 \Rightarrow \sqrt{x-1} < \sqrt{x+1}$)

[Alternatively, we can argue (slightly informally) that the difference between x^2 and $x^2 - 1$ (ie 1) is contracted by applying the square root function, so that $\sqrt{x^2} - \sqrt{x^2 - 1} < 1$]

Method 2

We expect the unrestricted y = arcoshx to be symmetric about the *x*-axis (as y = coshx is symmetric about the *y*-axis). So we could show that $y = ln(x \pm \sqrt{x^2 - 1})$ can also be written as

 $y = \pm ln(x + \sqrt{x^2 - 1})$, and then reject the negative branch as before.

So we want to show that $ln(x - \sqrt{x^2 - 1}) = -ln(x + \sqrt{x^2 - 1})$:

RHS =
$$ln\left(\frac{1}{x+\sqrt{x^2-1}}\right) = ln\left(\frac{x-\sqrt{x^2-1}}{x^2-(x^2-1)}\right) = ln(x-\sqrt{x^2-1})$$
, as required

3