Hyperbolic Functions – Q4 [Problem/M](17/6/23)

Given that $\int \frac{1}{\sqrt{x^2-a^2}} dx = arcosh(\frac{x}{a})$, and that

 $arcoshx = ln \ (x + \sqrt{x^2 - 1})$, justify the writing of the integral as $ln \ (x + \sqrt{x^2 - a^2})$

Solution

$$arcosh\left(\frac{x}{a}\right) = ln\left(\frac{x}{a} + \sqrt{\frac{x^2}{a^2} - 1}\right) = \ln\left(\frac{x + \sqrt{x^2 - a^2}}{a}\right)$$

$$= \ln\left(x + \sqrt{x^2 - a^2}\right) - lna \text{ , which only differs from } \ln\left(x + \sqrt{x^2 - a^2}\right) \text{ by a constant}$$