Hyperbolic Functions - Q10 [Practice/M] (17/6/23)

Derive an expression for $\operatorname{arsinh}(a)$ in the form $\ln b$

Solution
Let $x=\operatorname{arsinh}(a)$, so that $\sinh x=a$
and $\frac{1}{2}\left(e^{x}-e^{-x}\right)=a$
Then $\frac{1}{2}\left(e^{2 x}-1\right)=a e^{x}$
and $e^{2 x}-2 a e^{x}-1=0$,
so that $e^{x}=\frac{2 a \pm \sqrt{4 a^{2}+4}}{2}=a+\sqrt{a^{2}+1}$ (rejecting the negative root)

Thus $\operatorname{arsinh}(a)=\ln \left(a+\sqrt{a^{2}+1}\right)$
(noting that $a+\sqrt{a^{2}+1}>0$)
$\left[\right.$ Note that $\operatorname{arsinh}\left(\frac{x}{a}\right)=\ln \left(\frac{x}{a}+\sqrt{\left(\frac{x}{a}\right)^{2}+1}\right)$
$=\ln \left(\frac{x+\sqrt{x^{2}+a^{2}}}{a}\right)=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)-\ln a$
In the formulae booklets, $\int \frac{1}{\sqrt{a^{2}+x^{2}}} d x$ is often given as
" $\operatorname{arsinh}\left(\frac{x}{a}\right)$ or $\ln \left(x+\sqrt{x^{2}+a^{2}}\right)$ " but, as we've just seen, these two expressions differ by a constant.]

