Hyperbolic Functions Overview (17/6/23)

Q1 [Practice/E]

(i) Prove, using exponential functions, that
(a) $\cosh ^{2} x-\sinh ^{2} x=1$
(b) $\sinh 2 x=2 \sinh x \cosh x$
(ii) By differentiating the result from (i)(b), obtain an expression for $\cosh 2 x$ in terms of $\cosh ^{2} x$ and $\sinh ^{2} x$

Q2 [Practice/E]

(a) Find the formula connecting $\tanh ^{2} x \& \operatorname{sech}^{2} x$?
(b) Find the formula connecting $\operatorname{coth}^{2} x \& \operatorname{cosech}^{2} x$?

Q3 [Practice/E]

If $x=\sinh u$, write $\sinh (4 u)$ in terms of x

Q4 [Practice/M]

Given that $\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\operatorname{arcosh}\left(\frac{x}{a}\right)$, and that
$\operatorname{arcosh} x=\ln \left(x+\sqrt{x^{2}-1}\right)$, justify the writing of the integral as $\ln \left(x+\sqrt{x^{2}-a^{2}}\right)$

Q5 [Practice/E]

Find or prove the following:
(i) $\frac{d}{d x} \tanh x$
(ii) $\frac{d}{d x} \operatorname{arcosh} x=\frac{1}{\sqrt{x^{2}-1}}$
(iii) $\frac{d}{d x} \operatorname{artanh} x=\frac{1}{1-x^{2}}$
(iv) $\frac{d}{d x} \operatorname{sech} x$

Q6 [Practice/M]

Solve the equation $5 \cosh 2 x+3 \sinh x=6$,
giving your answers in exact logarithmic form.

Q7 [Practice/E]

Using the logarithmic form of $\operatorname{arcosh} x$, prove that the derivative of $\operatorname{arcosh} x$ is $\frac{1}{\sqrt{x^{2}-1}}$

Q8 [Practice/M]

Show that $\operatorname{artanh} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right) \quad(|x|<1)$

Q9 [Practice/H]

Show that $\operatorname{arcosh} x=\ln \left(x+\sqrt{x^{2}-1}\right)$

Q10 [Practice/M]

Derive an expression for $\operatorname{arsinh}(a)$ in the form $\ln b$

Q11 [Problem/M]

What is the domain of $\operatorname{artanh}\left(\frac{x}{2}\right)$?

Q12 [Practice/M]

Show that $\operatorname{arcoth} x=\frac{1}{2} \ln \left(\frac{1+x}{x-1}\right) \quad(|x|>1)$

Q13 [Practice/E]

(i) Use $\operatorname{artanh} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)$ to show that $\frac{d}{d x} \operatorname{artanh} x=\frac{1}{1-x^{2}}$
(ii) Use $\operatorname{arcoth} x=\frac{1}{2} \ln \left(\frac{1+x}{x-1}\right)$ to show that $\frac{d}{d x} \operatorname{arcoth} x=\frac{1}{1-x^{2}}$ also

Q14 [Problem/M]

(i) Show that $\operatorname{arcoth} x=\operatorname{artanh}\left(\frac{1}{x}\right)$
(ii) Find $f(x)$ such that $\operatorname{arcosh} x=\operatorname{arsinh}(f(x))$

Q15 [Practice/M]

Given that $\operatorname{arcosh} x=\ln \left(x+\sqrt{x^{2}-1}\right)$, show that if $\cosh a=b$ then $a=\ln \left(b \pm \sqrt{b^{2}-1}\right)$

Q16 [Practice/E]

Write lna in the form $\operatorname{arsinh}(f(a))$, where $f(a)$ is some expression in terms of a.

