Hyperbolic Functions Overview (17/6/23)

Q1 [Practice/E]

(i) Prove, using exponential functions, that

(a)
$$cosh^2x - sinh^2x = 1$$

(b) sinh2x = 2sinhxcoshx

(ii) By differentiating the result from (i)(b), obtain an expression for cosh2x in terms of $cosh^2x$ and $sinh^2x$

Q2 [Practice/E]

- (a) Find the formula connecting $tanh^2 x \& sech^2 x$?
- (b) Find the formula connecting $coth^2 x \& cosech^2 x$?

Q3 [Practice/E]

If x = sinhu, write sinh(4u) in terms of x

Q4 [Practice/M]

Given that $\int \frac{1}{\sqrt{x^2-a^2}} dx = arcosh(\frac{x}{a})$, and that $arcoshx = ln (x + \sqrt{x^2 - 1})$, justify the writing of the integral as $ln (x + \sqrt{x^2 - a^2})$

Q5 [Practice/E]

Find or prove the following:

(i)
$$\frac{d}{dx} tanhx$$

(ii) $\frac{d}{dx} arcoshx = \frac{1}{\sqrt{x^2 - 1}}$
(iii) $\frac{d}{dx} artanhx = \frac{1}{1 - x^2}$
(iv) $\frac{d}{dx} sechx$

Q6 [Practice/M]

Solve the equation 5cosh2x + 3sinhx = 6, giving your answers in exact logarithmic form.

Q7 [Practice/E]

Using the logarithmic form of *arcoshx*, prove that the derivative of *arcoshx* is $\frac{1}{\sqrt{x^2-1}}$

Q8 [Practice/M]

Show that $\operatorname{artanhx} = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right) \quad (|x| < 1)$

Q9 [Practice/H]

Show that $arcoshx = \ln(x + \sqrt{x^2 - 1})$

Q10 [Practice/M]

Derive an expression for arsinh(a) in the form lnb

Q11 [Problem/M]

What is the domain of $artanh\left(\frac{x}{2}\right)$?

Q12 [Practice/M]

Show that $arcothx = \frac{1}{2}ln\left(\frac{1+x}{x-1}\right) \quad (|x| > 1)$

Q13 [Practice/E]

(i) Use $artanhx = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$ to show that $\frac{d}{dx} artanhx = \frac{1}{1-x^2}$

(ii) Use $arcothx = \frac{1}{2} ln\left(\frac{1+x}{x-1}\right)$ to show that $\frac{d}{dx}arcothx = \frac{1}{1-x^2} also$

Q14 [Problem/M]

- (i) Show that $arcothx = artanh\left(\frac{1}{x}\right)$
- (ii) Find f(x) such that arcoshx = arsinh(f(x))

Q15 [Practice/M]

Given that $arcoshx = ln(x + \sqrt{x^2 - 1})$, show that if cosha = b then $a = ln (b \pm \sqrt{b^2 - 1})$

Q16 [Practice/E]

Write *lna* in the form arsinh(f(a)), where f(a) is some expression in terms of a.