# Hyperbolas - Exercises (Solutions) (4 pages; 18/8/19)

(1) Show that the equation of the tangent to the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 at the point (acosht, bsinht) is

$$yasinht = xbcosht - ab$$

## Solution

Using the parametric equations  $x = a \cosh t \& y = b \sinh t$ ,

$$\frac{dx}{dt} = asinht \& \frac{dy}{dt} = bcosht$$
,

so that 
$$\frac{dy}{dx} = \frac{bcosht}{asinht}$$

and the equation of the tangent at (acosht, bsinht) is

$$\frac{y - bsinht}{x - acosht} = \frac{bcosht}{asinht}$$

and hence  $yasinht - absinh^2t = xbcosht - abcosh^2t$ , so that yasinht = xbcosht - ab

(2) Given that the tangent in (C)(1) meets the asymptotes of the hyperbola at the points P & Q, show that the mid-point of P & Q is (acosht, bsinht).

### Solution

The asymptotes of the hyperbola are  $y = \pm \frac{b}{a}x$ 

From (1), the tangent to the hyperbola at (acosht, bsinht) meets the asymptote  $y = \frac{b}{a}x$  at P (say), where bxsinht = xbcosht - ab and the asymptote  $y = -\frac{b}{a}x$  at Q where

$$-bxsinht = xbcosht - ab$$

so that P is the point 
$$(\frac{a}{cosht-sinht}, \frac{b}{cosht-sinht})$$

and Q is the point 
$$(\frac{a}{cosht+sinht}, \frac{-b}{cosht+sinht})$$

The mid-point of P & Q is therefore

$$\left(\frac{1}{2}\left[\frac{a}{cosht-sinht} + \frac{a}{cosht+sinht}\right], \frac{1}{2}\left[\frac{b}{cosht-sinht} + \frac{-b}{cosht+sinht}\right]\right) \\
= \left(\frac{acosht}{cosh^2t-sinh^2t}, \frac{bsinht}{cosh^2t-sinh^2t}\right) = (acosht, bsinht), \text{ as required.}$$

(3) In the case where b = a, find the area of the triangle OPQ (where P & Q are as in (C)(2), and O is the Origin).

#### Solution

The two asymptotes are at right angles to each other, so that the required area,  $A = \frac{1}{2}OP.OQ$ 

Then 
$$4A^2 = \left(\left(\frac{a}{cosht-sinht}\right)^2 + \left(\frac{a}{cosht-sinht}\right)^2\right)$$

$$\times \left(\left(\frac{a}{cosht+sinht}\right)^2 + \left(\frac{-a}{cosht+sinht}\right)^2\right)$$

$$= \left(\frac{2a^2}{(cosht-sinht)^2}\right) \left(\frac{2a^2}{(cosht+sinht)^2}\right)$$

$$= \frac{4a^4}{(cosh^2t-sinh^2t)^2} = 4a^4$$
and therefore  $A = a^2$ 

(4) The chord PQ, where P and Q are points on the rectangular hyperbola  $xy = c^2$ , has gradient 1. Show that the locus of the point of intersection of the tangents from P and Q is the line

$$y = -x$$
. [Edx FP3 textbook, Ex. 2G, Q9]

## **Solution**

Let P & Q be the points  $\left(ct_1, \frac{c}{t_1}\right) \& \left(ct_2, \frac{c}{t_2}\right)$ , respectively.

As the gradient of PQ is  $1, \frac{\frac{c}{t_2} - \frac{c}{t_1}}{ct_2 - ct_1} = 1$ , so that

$$\frac{1}{t_2} - \frac{1}{t_1} = t_2 - t_1$$

$$\Rightarrow \frac{t_1 - t_2}{t_1 t_2} = t_2 - t_1$$

$$\Rightarrow t_1 t_2 = -1$$
, as  $t_1 \neq t_2$  ( $P \& Q$  being distinct points)

The equation of the tangent from *P* is:

$$\frac{y-\frac{c}{t_1}}{x-ct_1} = \frac{dy}{dx/dt} | t = t_1$$
, where  $x = ct \& y = \frac{c}{t}$ 

so that 
$$\frac{dy}{dt} = -\frac{c}{t^2} \& \frac{dx}{dt} = c$$

and the equation of the tangent from *P* is

$$\frac{y - \frac{c}{t_1}}{x - ct_1} = \frac{\left(-\frac{c}{t_1^2}\right)}{c} \Rightarrow t_1^2 y - t_1 c = -(x - ct_1)$$

$$\Rightarrow t_1^2 y = -x + 2ct_1 \quad (1)$$

Similarly, the equation of the tangent from Q is  $t_2^2y = -x + 2ct_2$  and these lines intersect where

$$t_1^2y - 2ct_1 = t_2^2y - 2ct_2$$
,

so that 
$$y(t_1^2 - t_2^2) = 2c(t_1 - t_2)$$

and 
$$y = \frac{2c}{t_1 + t_2}$$
 (as  $t_1 \neq t_2$ )

Then, from (1), 
$$x = 2ct_1 - \frac{2ct_1^2}{t_1 + t_2}$$

$$= \frac{2ct_1^2 + 2ct_1t_2 - 2ct_1^2}{t_1 + t_2}$$
$$= \frac{2ct_1t_2}{t_1 + t_2}$$

and so 
$$\frac{y}{x} = \frac{1}{t_1 t_2} = -1$$
 (found earlier),

and thus the points of intersection satisfy y = -x, as required.